You are here
Search results
(1 - 20 of 49)
Pages
- Title
- Reliability improvement of DFIG-based wind energy conversion systems by real time control
- Creator
- Elhmoud, Lina Adnan Abdullah
- Date
- 2015
- Collection
- Electronic Theses & Dissertations
- Description
-
Reliability is the probability that a system or component will satisfactorily perform its intended function under given operating conditions. The average time of satisfactory operation of a system is called the mean time between failures (MTBF) and. the higher value of MTBF indicates higher reliability and vice versa. Nowadays, reliability is of greater concern than in the past especially for offshore wind turbines since the access to these installations in case of failures is both costly and...
Show moreReliability is the probability that a system or component will satisfactorily perform its intended function under given operating conditions. The average time of satisfactory operation of a system is called the mean time between failures (MTBF) and. the higher value of MTBF indicates higher reliability and vice versa. Nowadays, reliability is of greater concern than in the past especially for offshore wind turbines since the access to these installations in case of failures is both costly and difficult. Power semiconductor devices are often ranked as the most vulnerable components from reliability perspective in a power conversion system. The lifetime prediction of power modules based on mission profile is an important issue. Furthermore, lifetime modeling of future large wind turbines is needed in order to make reliability predictions in the early design phase. By conducting reliability prediction in the design phase a manufacture can ensure that the new wind turbines will operate within designed reliability metrics such as lifetime.This work presents reliability analysis of power electronic converters for wind energy conversion systems (WECS) based on semiconductor power losses. A real time control scheme is proposed to maximize the system's lifetime and the accumulated energy produced over the lifetime. It has been verified through the reliability model that a low-pass-filter-based control can effectively increase the MTBF and lifetime of the power modules. The fundamental cause to achieve higher MTBF lies in the reduction of the number of thermal cycles.The key element in a power conversion system is the power semiconductor device, which operates as a power switch. The improvement in power semiconductor devices is the critical driving force behind the improved performance, efficiency, reduced size and weight of power conversion systems. As the power density and switching frequency increase, thermal analysis of power electronic system becomes imperative. The analysis provides information on semiconductor device rating, reliability, and lifetime calculation. The power throughput of the state-of-the-art WECS that is equipped with maximum power point control algorithms is subjected to wind speed fluctuations, which may cause significant thermal cycling of the IGBT in power converter and in turn lead to reduction in lifetime. To address this reliability issue, a real-time control scheme based on the reliability model of the system is proposed. In this work a doubly fed induction generator is utilized as a demonstration system to prove the effectiveness of the proposed method. Average model of three-phase converter has been adopted for thermal modeling and lifetime estimation. A low-pass-filter based control law is utilized to modify the power command from conventional WECS control output. The resultant reliability performance of the system has been significantly improved as evidenced by the simulation results.
Show less
- Title
- Design and simulation of single-crystal diamond diodes for high voltage, high power and high temperature applications
- Creator
- Suwanmonkha, Nutthamon
- Date
- 2016
- Collection
- Electronic Theses & Dissertations
- Description
-
ABSTRACTDESIGN AND SIMULATION OF SINGLE-CRYSTAL DIAMOND DIODES FOR HIGH VOLTAGE, HIGH POWER AND HIGH TEMPERATURE APPLICATIONSByNutthamon SuwanmonkhaDiamond has exceptional properties and great potentials for making high-power semiconducting electronic devices that surpass the capabilities of other common semiconductors including silicon. The superior properties of diamond include wide bandgap, high thermal conductivity, large electric breakdown field and fast carrier mobilities. All of these...
Show moreABSTRACTDESIGN AND SIMULATION OF SINGLE-CRYSTAL DIAMOND DIODES FOR HIGH VOLTAGE, HIGH POWER AND HIGH TEMPERATURE APPLICATIONSByNutthamon SuwanmonkhaDiamond has exceptional properties and great potentials for making high-power semiconducting electronic devices that surpass the capabilities of other common semiconductors including silicon. The superior properties of diamond include wide bandgap, high thermal conductivity, large electric breakdown field and fast carrier mobilities. All of these properties are crucial for a semiconductor that is used to make electronic devices that can operate at high power levels, high voltage and high temperature.Two-dimensional semiconductor device simulation software such as Medici assists engineers to design device structures that allow the performance requirements of device applications to be met. Most physical material parameters of the well-known semiconductors are already compiled and embedded in Medici. However, diamond is not one of them. Material parameters of diamond, which include the models for incomplete ionization, temperature-and-impurity-dependent mobility, and impact ionization, are not readily available in software such as Medici. Models and data for diamond semiconductor material have been developed for Medici in the work based on results measured in the research literature and in the experimental work at Michigan State University. After equipping Medici with diamond material parameters, simulations of various diamond diodes including Schottky, PN-junction and merged Schottky/PN-junction diode structures are reported. Diodes are simulated versus changes in doping concentration, drift layer thickness and operating temperature. In particular, the diode performance metrics studied include the breakdown voltage, turn-on voltage, and specific on-resistance. The goal is to find the designs which yield low power loss and provide high voltage blocking capability. Simulation results are presented that provide insight for the design of diamond diodes using the various diode structures. Results are also reported on the use of field plate structures in the simulations to control the electric field and increase the breakdown voltage.
Show less
- Title
- Unconstrained 3D face reconstruction from photo collections
- Creator
- Roth, Joseph (Software engineer)
- Date
- 2016
- Collection
- Electronic Theses & Dissertations
- Description
-
This thesis presents a novel approach for 3D face reconstruction from unconstrained photo collections. An unconstrained photo collection is a set of face images captured under an unknown and diverse variation of poses, expressions, and illuminations. The output of the proposed algorithm is a true 3D face surface model represented as a watertight triangulated surface with albedo data colloquially referred to as texture information. Reconstructing a 3D understanding of a face based on 2D input...
Show moreThis thesis presents a novel approach for 3D face reconstruction from unconstrained photo collections. An unconstrained photo collection is a set of face images captured under an unknown and diverse variation of poses, expressions, and illuminations. The output of the proposed algorithm is a true 3D face surface model represented as a watertight triangulated surface with albedo data colloquially referred to as texture information. Reconstructing a 3D understanding of a face based on 2D input is a long-standing computer vision problem. Traditional photometric stereo-based reconstruction techniques work on aligned 2D images and produce a 2.5D depth map reconstruction. We extend face reconstruction to work with a true 3D model, allowing us to enjoy the benefits of using images from all poses, up to and including profiles. To use a 3D model, we propose a novel normal field-based Laplace editing technique which allows us to deform a triangulated mesh to match the observed surface normals. Unlike prior work that require large photo collections, we formulate an approach to adapt to photo collections with few images of potentially poor quality. We achieve this through incorporating prior knowledge about face shape by fitting a 3D Morphable Model to form a personalized template before using a novel analysis-by-synthesis photometric stereo formulation to complete the fine face details. A structural similarity-based quality measure allows evaluation in the absence of ground truth 3D scans. Superior large-scale experimental results are reported on Internet, synthetic, and personal photo collections.
Show less
- Title
- A global modeling framework for plasma kinetics : development and applications
- Creator
- Parsey, Guy Morland
- Date
- 2017
- Collection
- Electronic Theses & Dissertations
- Description
-
The modern study of plasmas, and applications thereof, has developed synchronously with com-puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many-body, systems have resulted in the development of multiple simulation methods (particle-in-cell,fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomesof plasma applications. Recognizing that different algorithms are chosen to best address specifictopics of interest, this...
Show moreThe modern study of plasmas, and applications thereof, has developed synchronously with com-puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many-body, systems have resulted in the development of multiple simulation methods (particle-in-cell,fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomesof plasma applications. Recognizing that different algorithms are chosen to best address specifictopics of interest, this thesis centers around the development of an open-source global model frame-work for the focused study of non-equilibrium plasma kinetics. After verification and validationof the framework, it was used to study two physical phenomena: plasma-assisted combustion andthe recently proposed optically-pumped rare gas metastable laser.Global models permeate chemistry and plasma science, relying on spatial averaging to focusattention on the dynamics of reaction networks. Defined by a set of species continuity and energyconservation equations, the required data and constructed systems are conceptually similar acrossmost applications, providing a light platform for exploratory and result-search parameter scan-ning. Unfortunately, it is common practice for custom code to be developed for each application-an enormous duplication of effort which negatively affects the quality of the software produced.Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed tosupport all modeling phases: collection and analysis of reaction data, construction of an exportablesystem of model ODEs, and a platform for interactive evaluation and post-processing analysis. Asymbolic ODE system is constructed for interactive manipulation and generation of a Jacobian,both of which are compiled as operation-optimized C-code.Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuelby opening up new avenues of control and optimization. With applications ranging from engineefficiency and pollution control to stabilized operation of scramjet technology in hypersonic flows,developing an understanding of the underlying plasma chemistry is of the utmost importance.While the use of equilibrium (thermal) plasmas in the combustion process extends back to the ad-vent of the spark-ignition engine, works from the last few decades have demonstrated fundamentaldifferences between PAC and classical combustion theory. The KGMf is applied to nanosecond-discharge systems in order to analyze the effects of electron energy distribution assumptions onreaction kinetics and highlight the usefulness of 0D modeling in systems defined by coupled andcomplex physics.With fundamentally different principles involved, the concept of optically-pumped rare gasmetastable lasing (RGL) presents a novel opportunity for scalable high-powered lasers by takingadvantage of similarities in the electronic structure of elements while traversing the periodic ta-ble. Building from the proven concept of diode-pumped alkali vapor lasers (DPAL), RGL systemsdemonstrate remarkably similar spectral characteristics without problems associated with heatedcaustic vapors. First introduced in 2012, numerical studies on the latent kinetics remain immature.This work couples an analytic model developed for DPAL with KGMf plasma chemistry to bet-ter understand the interaction of a non-equilibrium plasma with the induced laser processes anddetermine if optical pumping could be avoided through careful discharge selection.
Show less
- Title
- Energy utilization modeling of animal draft power (EUMDAP) for Kenyan small-holder semi-arid agriculture
- Creator
- Mungai, George S. N.
- Date
- 1998
- Collection
- Electronic Theses & Dissertations
- Title
- Calibration of optical see through head mounted displays for augmented reality
- Creator
- Zhou, Ji
- Date
- 2007
- Collection
- Electronic Theses & Dissertations
- Title
- Designing a package for pharmaceutical tablets in relation to moisture and dissolution
- Creator
- Yoon, Seungyil
- Date
- 2003
- Collection
- Electronic Theses & Dissertations
- Title
- Logic simulation on massively parallel SIMD machines
- Creator
- Chung, Yunmo
- Date
- 1991
- Collection
- Electronic Theses & Dissertations
- Title
- On the beneficial effects of deleterious mutations
- Creator
- Covert, Arthur W.
- Date
- 2010
- Collection
- Electronic Theses & Dissertations
- Title
- Using computer simulations to study relativistic heavy ion collisions
- Creator
- Murray, Joelle
- Date
- 1998
- Collection
- Electronic Theses & Dissertations
- Title
- Ring pack behavior and oil consumption modeling in ic engines
- Creator
- Ejakov, Mikhail Aleksandrovich
- Date
- 1998
- Collection
- Electronic Theses & Dissertations
- Title
- Empirical analysis of the effects of decision type and control over data access and model access on user preference for modeling environments
- Creator
- Dawson, Margaret (Margaret Leigh)
- Date
- 1988
- Collection
- Electronic Theses & Dissertations
- Title
- Multichix, a computer model that projects receipts and expenses for egg production enterprises
- Creator
- Jacobs, Roger Dean
- Date
- 1978
- Collection
- Electronic Theses & Dissertations
- Title
- Modular modeling of engineering systems using fixed input-output structure
- Creator
- Byam, Brooks Philip
- Date
- 1999
- Collection
- Electronic Theses & Dissertations
- Title
- Computer simulations of high-energy heavy ion collisions
- Creator
- Kortemeyer, Gerd
- Date
- 1997
- Collection
- Electronic Theses & Dissertations
- Title
- Parallel computation models : representation, analysis and applications
- Creator
- Sun, Xian-He
- Date
- 1990
- Collection
- Electronic Theses & Dissertations
- Title
- Parallel discrete event simulation and its application on logic simulation
- Creator
- Xu, Jinsheng
- Date
- 2002
- Collection
- Electronic Theses & Dissertations
- Title
- A multiport approach to modeling and solving large-scale dynamic systems
- Creator
- Wang, Yanying
- Date
- 1992
- Collection
- Electronic Theses & Dissertations
- Title
- Surface matching and chemical scoring to detect unrelated proteins binding similar small molecules
- Creator
- Van Voorst, Jeffrey Ryan
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
SURFACE MATCHING AND CHEMICAL SCORING TO DETECT UNRELATED PROTEINS BINDING SIMILAR SMALL MOLECULESByJeffrey Ryan Van VoorstHow can one deduce if two clefts or pockets in different protein structures bind the same small molecule if there is no significant sequence or structural similarity between the proteins? Human pattern recognition, based on extensive structural biology or ligand design experience, is the best choice when the number of sites is small. However, to be able to scale to the...
Show moreSURFACE MATCHING AND CHEMICAL SCORING TO DETECT UNRELATED PROTEINS BINDING SIMILAR SMALL MOLECULESByJeffrey Ryan Van VoorstHow can one deduce if two clefts or pockets in different protein structures bind the same small molecule if there is no significant sequence or structural similarity between the proteins? Human pattern recognition, based on extensive structural biology or ligand design experience, is the best choice when the number of sites is small. However, to be able to scale to the thousands of structures in structural databases requires implementing that experience as computational method. The primary advantage of such a computational tool is to be able to focus human expertise on a much smaller set of enriched binding sites.Although a number of tools have been developed for this purpose by many groups [61, 51, 86, 88, 91], to our knowledge, a basic hypothesis remains untested: two proteins that bind the same small molecule have binding sites with similar chemical and shape features, even when the proteins do not share significant sequence or structural similarity. A computational method to compare protein small molecule binding sites based on surface and chemical complementarity is proposed and implemented as a software package named SimSite3D. This method is protein structure based, does not rely on explicit protein sequence or main chain similarities, and does not require the alignment of atomic centers. It has been engineered to provide a detailed search of one fragment site versus a dataset of about 13,000 full ligand sites in 2&ndash4 hours (on one processor core).Several contributions are presented in this dissertation. First, several examples are presented where SimSite3D is able to find significant matches between binding sites that have similar ligand fragments bound but are unrelated in sequence or structure. Second, including the complementarity of binding site molecular surfaces helps to distinguish between sites that share a similar chemical motif, but do not necessarily bind the same molecule. Third, a number of clear examples are provided to illustrate the challenges in comparing binding sites which should be addressed in order for a binding site comparison method to gain widespread acceptance similar to that enjoyed by BLAST[3, 4]. Finally, an optimization method for addressing protein (and small molecule) flexibility in the context of binding site comparisons is presented, prototyped, and tested.Throughout the work, computational models were chosen to strike a delicate balance between achieving sufficient accuracy of alignments, discriminating between accurate and poor alignments, and discriminating between similar and dissimilar sites. Each of these criteria is important. Due to the nature of the binding site comparison problem, each criterion presents a separate challenge and may require compromises to balance performance to achieve acceptable performance in all three categories.At the present, the problem of addressing flexibility when comparing binding site surfaces has not been presented or published by any other research group. In fact, the problem of modeling flexibility to determine correspondences between binding sites is an untouched problem of great importance. Therefore, the final goal of this dissertation is to prototype and evaluate a method that uses inverse kinematics and gradient based optimization to optimize a given objective function subject to allowed protein motions encoded as stereochemical constraints. In particular, we seek to simultaneously maximize the surface and chemical complementarity of two closely aligned sites subject to directed changes in side chain dihedral angles.
Show less
- Title
- Investigating the impact of manmade reservoirs on large-scale hydrology and water resources using high-resolution modeling
- Creator
- Shin, Sanghoon
- Date
- 2019
- Collection
- Electronic Theses & Dissertations
- Description
-
Manmade reservoirs are important components of the terrestrial hydrologic system. Dam installments fragment river systems, and reservoir operations alter flow regimes. The total storage capacity of existing global reservoirs is large enough to hold one sixth of annual continental discharge to global oceans. Due to growing energy demands, hundreds of large dams are being built and planned around the world, especially in the developing countries. Therefore, there is an urgent need to develop a...
Show moreManmade reservoirs are important components of the terrestrial hydrologic system. Dam installments fragment river systems, and reservoir operations alter flow regimes. The total storage capacity of existing global reservoirs is large enough to hold one sixth of annual continental discharge to global oceans. Due to growing energy demands, hundreds of large dams are being built and planned around the world, especially in the developing countries. Therefore, there is an urgent need to develop a better understanding of the impact of the existing and new dams on hydrological, ecological, agricultural, and socio-economic systems. Owing to increasing computational power and needs to understand and simulate processes in small-scale, hydrological models are advancing towards hyper-resolution global hydrological models. One of benefits of the increased spatial resolution is that the dynamics of surface water inundation over natural river-floodplain systems and manmade reservoirs can be explicitly represented; however, existing global models are not capable of simulating the river-floodplain-reservoir inundation dynamics in an integrated manner. This dissertation addresses this important standing issue by developing a high-resolution, continental-scale model to simulate the spatial and temporal dynamics of reservoir storage and release, thus paving pathways toward hyper-resolution surface water modeling in continental- to global-scale hydrological and climate models. The newly developed model is applied to simulate reservoirs within the contiguous United States (CONUS) and the Mekong River Basin (MRB) in Southeast Asia. With respect to the model development, the following advances are made over the previous global reservoir modeling studies: (1) an existing algorithm for reservoir operation is improved by conducting analytical analysis and numerical experiments and by introducing new calibration features for reservoir operation; (2) the spatial extent and its seasonal dynamics of reservoirs are explicitly simulated and reservoirs are treated as an integral part of river-floodplain routing, thus reservoir storage is no longer isolated from river and floodplain storages; and (3) a novel approach for processing and integrating high-resolution digital elevation models (DEMs) in river-floodplain-reservoir routing is introduced. The newly developed reservoir scheme is integrated within the river-floodplain routing scheme of a continental hydrological model, LEAF-Hydro-Flood, which is set for the CONUS, where abundant data are available for model validation. Then, the reservoir scheme is integrated into a global hydrodynamics model, CaMa-Flood, to investigate the historical impact of manmade reservoirs in the MRB that is experiencing an unprecedented boom in hydropower dam construction. Using the new scheme, the role of flood dynamics in modulating the hydrology of the MRB and the potential impact of flow regulation by the dams on the inundation dynamics are investigated. The significance of hydrologic effect of increasing dams is compared with that of climate variability. The fully coupled river-reservoir-floodplain storage simulation approach presented in this dissertation provides an advancement in hydrological modeling in terms of the representation of surface water dynamics, which is indispensable for better attribution of the observed changes in the water cycle, prediction of changes in water resources, and the understanding of the continually changing environmental and ecological systems.
Show less