You are here
Search results
(1 - 4 of 4)
- Title
- The Evolution of Fundamental Neural Circuits for Cognition in Silico
- Creator
- Tehrani-Saleh, Ali
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Despite decades of research on intelligence and fundamental components of cognition, we still know very little about the structure and functionality of nervous systems. Questions in cognition and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience, psychology, and computer science. Yet it is difficult to reverse engineer observed sophisticated intelligent behaviors in animals and even more difficult to understand their underlying mechanisms.In...
Show moreDespite decades of research on intelligence and fundamental components of cognition, we still know very little about the structure and functionality of nervous systems. Questions in cognition and intelligent behavior are addressed by scientists in the fields of behavioral biology, neuroscience, psychology, and computer science. Yet it is difficult to reverse engineer observed sophisticated intelligent behaviors in animals and even more difficult to understand their underlying mechanisms.In this dissertation, I use a recently-developed neuroevolution platform -called Markov brain networks- in which Darwinian selection is used to evolve both structure and functionality of digital brains. I use this platform to study some of the most fundamental cognitive neural circuits: 1) visual motion detection, 2) collision-avoidance based on visual motion cues, 3) sound localization, and 4) time perception. In particular, I investigate both the selective pressures and environmental conditions in the evolution of these cognitive components, as well as the circuitry and computations behind them. This dissertation lays the groundwork for an evolutionary agent-based method to study the neural circuits for cognition in silico.
Show less
- Title
- Replaying Life's Virtual Tape : Examining the Role of History in Experiments with Digital Organisms
- Creator
- Bundy, Jason Nyerere
- Date
- 2021
- Collection
- Electronic Theses & Dissertations
- Description
-
Evolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not...
Show moreEvolution is a complex process with a simple recipe. Evolutionary change involves three essential “ingredients” interacting over many generations: adaptation (selection), chance (random variation), and history (inheritance). In 1989’s Wonderful Life, the late paleontologist Stephen Jay Gould advocated for the importance of historical contingency—the way unique events throughout history influence future possibilities—using a clever thought experiment of “replaying life’s tape”. But not everyone was convinced. Some believed that chance was the primary driver of evolutionary change, while others insisted that natural selection was the most powerful influence. Since then, “replaying life’s tape” has become a core method in experimental evolution for measuring the relative contributions of adaptation, chance, and history. In this dissertation, I focus on the effects associated with history in evolving populations of digital organisms—computer programs that self-replicate, mutate, compete, and evolve in virtual environments. In Chapter 1, I discuss the philosophical significance of Gould’s thought experiment and its influence on experimental methods. I argue that his thought experiment was a challenge to anthropocentric reasoning about natural history that is still popular, particularly outside of the scientific community. In this regard, it was his way of advocating for a “radical” view of evolution. In Chapter 2—Richard Lenski, Charles Ofria, and I describe a two-phase, virtual, “long-term” evolution experiment with digital organisms using the Avida software. In Phase I, we evolved 10 replicate populations, in parallel, from a single genotype for around 65,000 generations. This part of the experiment is similar to the design of Lenski’s E. coli Long-term Evolution Experiment (LTEE). We isolated the dominant genotype from each population around 3,000 generations (shallow history) into Phase I and then again at the end of Phase I (deep history). In Phase II, we evolved 10 populations from each of the genotypes we isolated from Phase I in two new environments, one similar and one dissimilar to the old environment used for Phase I. Following Phase II, we estimated the contributions of adaptation, chance, and history to the evolution of fitness and genome length in each new environment. This unique experimental design allowed us to see how the contributions of adaptation, chance, and history changed as we extended the depth of history from Phase I. We were also able to determine whether the results depended on the extent of environmental change (similar or dissimilar new environment). In Chapter 3, we report an extended analysis of the experiment from the previous chapter to further examine how extensive adaptation to the Phase I environment shaped the evolution of replicates during Phase II. We show how the form of pleiotropy (antagonistic or synergistic) between the old (Phase I) and new (Phase II) habitats was influenced by the depth of history from Phase I (shallow or deep) and the extent of environmental change (similar or dissimilar new environment). In the final chapter Zachary Blount, Richard Lenski, and I describe an exercise we developed using the educational version of Avida (Avida-ED). The exercise features a two-phase, “replaying life’s tape” activity. Students are able to explore how the unique history of founders that we pre-evolved during Phase I influences the acquisition of new functions by descendent populations during Phase II, which the students perform during the activity.
Show less
- Title
- EMERGENT COORDINATION : ADAPTATION, OPEN-ENDEDNESS, AND COLLECTIVE INTELLIGENCE
- Creator
- Bao, Honglin
- Date
- 2022
- Collection
- Electronic Theses & Dissertations
- Description
-
Agent-based modeling is a widely used computational method for studying the micro-macro bridge issue by simulating the microscopic interactions and observing the macroscopic emergence. This thesis begins with the fundamental methodology of agent-based models: how agents are represented, how agents interact, and how the agent population is structured. Two vital topics, the evolution of cooperation and opinion dynamics are used to illustrate methodological innovation. For the first topic, we...
Show moreAgent-based modeling is a widely used computational method for studying the micro-macro bridge issue by simulating the microscopic interactions and observing the macroscopic emergence. This thesis begins with the fundamental methodology of agent-based models: how agents are represented, how agents interact, and how the agent population is structured. Two vital topics, the evolution of cooperation and opinion dynamics are used to illustrate methodological innovation. For the first topic, we study the equilibrium selection in a coordination game in multi-agent systems. In particular, we focus on the characteristics of agents (supervisors and subordinates versus representative agents), the interactions of agents (reinforcement learning in the games with fixed versus adaptive learning rates according to the supervision and time-varying versus supervision-guided exploration rates), the network of agents (single-layer versus multi-layer networks), and their impact on the emergent behaviors. Regarding the second topic, we examine how opinions evolve and spread in a cognitively heterogeneous agent population with sparse interactions and how the opinion dynamics co-evolve with the open-ended society's structural change. We then discuss the rich insights into collective intelligence in the two proposed models viewed from the interaction-based adaptation and open-ended network structure. We finally link collective emergent intelligence to diverse applications in the realm of computing and other scientific fields in a cross-multidisciplinary manner.
Show less
- Title
- Evolution of distributed behavior
- Creator
- Knoester, David B.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of...
Show moreIn this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of distributed behavior that require communication: data-driven behaviors, where semantically meaningful data is transmitted between individuals; temporal behaviors, which are based on the relative timing of individuals' actions; and structural behaviors, which are responsible for maintaining the underlying communication network connecting individuals. Our results demonstrate that evolutionary algorithms can discover groups of individuals that exhibit each of these different classes of distributed behavior, and that these behaviors can be discovered both in isolation (e.g., evolving a purely data-driven algorithm) and in concert (e.g., evolving an algorithm that includes both data-driven and structural behaviors). As part of this research, we show that evolutionary algorithms can discover novel heuristics for distributed computing, and hint at a new class of distributed algorithm enabled by such studies.The majority of this research was conducted with the Avida platform for digital evolution, a system that has been proven to aid researchers in understanding the biological process of evolution by natural selection. For this reason, the results presented in this dissertation provide the foundation for future studies that examine how distributed behaviors evolved in nature. The close relationship between evolutionary biology and evolutionary algorithms thus aids our study of evolving algorithms for the next generation of distributed computing systems.
Show less