You are here
Search results
(1 - 3 of 3)
- Title
- Applying evolutionary computation techniques to address environmental uncertainty in dynamically adaptive systems
- Creator
- Ramirez, Andres J.
- Date
- 2013
- Collection
- Electronic Theses & Dissertations
- Description
-
A dynamically adaptive system (DAS) observes itself and its execution environment at run time to detect conditions that warrant adaptation. If an adaptation is necessary, then a DAS changes its structure and/or behavior to continuously satisfy its requirements, even as its environment changes. It is challenging, however, to systematically and rigorously develop a DAS due to environmental uncertainty. In particular, it is often infeasible for a human to identify all possible combinations of...
Show moreA dynamically adaptive system (DAS) observes itself and its execution environment at run time to detect conditions that warrant adaptation. If an adaptation is necessary, then a DAS changes its structure and/or behavior to continuously satisfy its requirements, even as its environment changes. It is challenging, however, to systematically and rigorously develop a DAS due to environmental uncertainty. In particular, it is often infeasible for a human to identify all possible combinations of system and environmental conditions that a DAS might encounter throughout its lifetime. Nevertheless, a DAS must continuously satisfy its requirements despite the threat that this uncertainty poses to its adaptation capabilities. This dissertation proposes a model-based framework that supports the specification, monitoring, and dynamic reconfiguration of a DAS to explicitly address uncertainty. The proposed framework uses goal-oriented requirements models and evolutionary computation techniques to derive and fine-tune utility functions for requirements monitoring in a DAS, identify combinations of system and environmental conditions that adversely affect the behavior of a DAS, and generate adaptations on-demand to transition the DAS to a target system configuration while preserving system consistency. We demonstrate the capabilities of our model-based framework by applying it to an industrial case study involving a remote data mirroring network that efficiently distributes data even as network links fail and messages are dropped, corrupted, and delayed.
Show less
- Title
- Evolution of distributed behavior
- Creator
- Knoester, David B.
- Date
- 2011
- Collection
- Electronic Theses & Dissertations
- Description
-
In this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of...
Show moreIn this dissertation, we describe a study in the evolution of distributed behavior, where evolutionary algorithms are used to discover behaviors for distributed computing systems. We define distributed behavior as that in which groups of individuals must both cooperate in working towards a common goal and coordinate their activities in a harmonious fashion. As such, communication among individuals is necessarily a key component of distributed behavior, and we have identified three classes of distributed behavior that require communication: data-driven behaviors, where semantically meaningful data is transmitted between individuals; temporal behaviors, which are based on the relative timing of individuals' actions; and structural behaviors, which are responsible for maintaining the underlying communication network connecting individuals. Our results demonstrate that evolutionary algorithms can discover groups of individuals that exhibit each of these different classes of distributed behavior, and that these behaviors can be discovered both in isolation (e.g., evolving a purely data-driven algorithm) and in concert (e.g., evolving an algorithm that includes both data-driven and structural behaviors). As part of this research, we show that evolutionary algorithms can discover novel heuristics for distributed computing, and hint at a new class of distributed algorithm enabled by such studies.The majority of this research was conducted with the Avida platform for digital evolution, a system that has been proven to aid researchers in understanding the biological process of evolution by natural selection. For this reason, the results presented in this dissertation provide the foundation for future studies that examine how distributed behaviors evolved in nature. The close relationship between evolutionary biology and evolutionary algorithms thus aids our study of evolving algorithms for the next generation of distributed computing systems.
Show less
- Title
- Mechanisms of adaptation and speciation : an experimental study using artificial life
- Creator
- Anderson, Carlos Jesus
- Date
- 2013
- Collection
- Electronic Theses & Dissertations
- Description
-
Detailed experimental studies in evolutionary biology are sometimes difficult--even with model organisms. Theoretical models alleviate some of these difficulties and often provide clean results, but they cannot always capture the complexity of dynamic evolutionary processes. Artificial life systems are tools that fall somewhere between model organisms and theoretical models that have been successfully used to study evolutionary biology. These systems simulate simple organisms that replicate,...
Show moreDetailed experimental studies in evolutionary biology are sometimes difficult--even with model organisms. Theoretical models alleviate some of these difficulties and often provide clean results, but they cannot always capture the complexity of dynamic evolutionary processes. Artificial life systems are tools that fall somewhere between model organisms and theoretical models that have been successfully used to study evolutionary biology. These systems simulate simple organisms that replicate, acquire random mutations, and reproduce differentially; as a consequence, they evolve naturally (i.e., evolution itself is not simulated). Here I use the software Avida to study several open questions on the genetic mechanisms of adaptation and speciation.In Chapter 1 (p. 13), I investigated whether beneficial alleles during adaptation came from new mutations or standing genetic variation--alleles already present in the population. I found that most beneficial alleles came from standing genetic variation, but new mutations were necessary for long-term evolution. I also found that adaptation from standing genetic variation was faster than from new mutations. Finally, I found that recombination brought together beneficial combinations of alleles from standing genetic variation.In Chapter 2 (p. 31), I investigated the probability of compensatory adaptation vs. reversion. Compensatory adaptation is the fixation of mutations that ameliorate the effects of deleterious mutations while the original deleterious mutations remain fixed. I found that compensatory adaptation was very common, but the window of opportunity for reversion was increased when the initial fitness of the population was high, the population size was large, and the mutation rate was high. The reason that the window of opportunity for reversion was constrained was that negative epistatic interactions with compensatory mutations prevented the revertant from being beneficial to the population.In Chapter 3 (p. 58), I showed experimentally that compensatory adaptation can lead to reproductive isolation (specifically, postzygotic isolation). In addition, I found that the strength of this isolation was independent of the effect size of the original deleterious mutations. Finally, I found that both deleterious and compensatory mutations contribute equally to reproductive isolation.Reproductive isolation between populations often evolves as a byproduct of independent adaptation to new environments, but the selective pressures of these environments may be divergent (`ecological speciation') or uniform (`mutation-order speciation'). In Chapter 4 (p. 75), I compared directly the strength of postzygotic isolation generated by ecological and mutation-order processes with and without migration. I found that ecological speciation generally formed stronger isolation than mutation-order speciation and that mutation-order speciation was more sensitive to migration than ecological speciation.Under the Dobzhansky-Muller model of speciation, hybrid inviability or sterility results from the evolution of genetic incompatibilities (DMIs) between species-specific alleles. This model predicts that the number of pairwise DMIs between species should increase quadratically through time, but the few tests of this `snowball effect' have had conflicting results. In Chapter 5 (p. 101), I show that pairwise DMIs accumulated quadratically, supporting the snowball effect. I found that more complex genetic interactions involved alleles that rescued pairwise incompatibilities, explaining the discrepancy between the expected accumulations of DMIs and observation.
Show less