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MATHEMATICS; APPLICATIONS = PROGRESS?*

A. G. R. STEWART

Department of Mathematics, University of Zimbabwe

MATHEMATICS IN ONE form or another is being applied to an increasing number of
disciplines, spreading from its traditional areas of application in the technological
subjects into the business and economic spheres and even into political science and
cliometric history. Thus it is essential that every educated person should learn to
appreciate mathematics, what it can, and more importantly what it cannot, do. The
recent catastrophe of the misapplication of catastrophe theory (a branch of
qualitative topology) in the social sciences is a case in point. To quote the title of an
interesting article on this point: 'You cannot be a twentieth century man without
maths.*1

This applies especially to Zimbabwe in 1980 with its vast problems with
conflicting priorities. So it is essential that there be an increasing number of well-
motivated mathematics graduates, from this University and from the teacher-
training colleges, to enter teaching and the private and public sectors in the
scientific, industrial and business spheres. In the non-teaching sphere, the need is
for graduates who can apply their mathematics correctly to the problems that they
encounter, whether they are routine or new and unusual problems. An interesting
example of an unusual application is one experienced by the late Professor Hanna
Neumann (one of the best mathematics teachers that I encountered during my
training) while she was at the Manchester College of Science and Technology. A
braid manufacturer, unable to work out how to use his new machine for making
another type of braid, brought his problem to the Department of Textile
Technology. There, one member, recognizing that the problem was a mathematical
one, referred it to a member of the Mathematics Department working in 'abstruse*
pure group theory. An application of group theory provided the manufacturer with
his required solution.2

In the teaching sphere, the need is for graduates who can teach, and teach
soundly, mathematics for the understanding of basic ideas and not for the
accumulation of facts. The task of producing such graduates poses two major
problems for the Mathematics Department of the University. Firstly, what
mathematics should be taught to achieve the useful mathematician? Here two
schools of thought prevail.

*An inaugural lecture delivered before the University of Zimbabwe on 17 July 1980.

1 The Economist, 27 Oct. 1979, 107-14.
2 The problem is posed in M, Gardner,' Mathematical games', Scientific American (1962), CCVI,

i, 141, and solved in M. Gardner, 'Mathematical games', ibid., ii, 158,
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The first, the one in which I was brought up, is that it is most efficient to give
students a thorough grounding in pure mathematics courses. This is in the hope that
the training will enable them to know how to find out what they need to know when
they are faced with and motivated by a specific problem. This approach is based on
the notions that the applications are so diverse that it is impossible to cover all
possibilities which might arise and that an out-of-context real life problem, beyond
the scope of experience of both lecturer and student, taught in a mathematics
classroom, is regarded as pure mathematics and kills incentive much more
effectively than an equally well-presented piece of mathematics.

The second is that an integrated approach of pure and applied mathematics is
better. Sir James Lighthill, in his Presidential address of 197O3 to the Mathematical
Association of Great Britain, claimed with true chauvinism that such an approach
has made Britain the leader in mathematical education. He went on to give an
example, taken from traditional applied mathematics, of how to teach applied
mathematics so as to dispel its then current reputation as a dull and boring subject
Hanna Neumann, in her 1968 address4 to the Australian equivalent of Professor
Lighthill's audience, took the more 'in vogue' approach by giving examples of
applications of pure mathematics using the mathematical modelling approach.
Mathematical modelling tries to replace the traditional approach, of well-presented
mathematical theory based on physical theories supplied by the scientists, with a
problem-based approach reaching back, with the scientist, to the data.

The fields of application of mathematics and the breadth of subject matter
within mathematics itself precludes anyone from being an expert in more than a
small portion of it Gauss (1777-1855) is often regarded as the last universalist in
mathematics and its applications, though Poincare (1854-1912), by not staying
long enough in any field to round out his work there, came close to mastering the
whole province of mathematics. However, the current trend, even in the research
field, is towards more interaction between the layers of mathematics that build from
the core of logical foundations, through pure layers to applied layers to the layers
which are rightly described by labels such as 'mathematical physics' or 'bio-
mathematics'.

Every mathematician is compelled by internal or external pressures to account
for the relevance of his studies, more often than not pursued for enjoyment The
feeling Is that, if he can find at least one point outside his layer of working to which
Ms field of mathematics can be applied, he has satisfied his critics.

At this point 1 should like to quote two statements from Alfred North
Whitehead on the usefulness of pure mathematics. The first is a comment on Plato's
'Lecture on The Good* in which Plato propounded an equation between 'The
Good' and the study of the natural numbers:

3 M, J, Lighthill, 'The art of teaching applied mathematics', Mathematical Gazette {1971) LV
249-70. '

4 H. Neumann. 'Who wants pure mathematics?', Australian Mathematical Gazette (1974) I
79-84. ' ;
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The notion of the importance of pattern is as old as civilization. Every
art is founded on the study of pattern. The cohesion of social systems
depends on the maintenance of patterns of behavior and advances in
civilization depend on the fortunate modification of such behavior
patterns. Thus the infusion of pattern into natural occurrences and the
stability of such patterns and the modification of such patterns is the
necessary condition for the realization of the Good. Mathematics is the
most powerful technique for the understanding of pattern and for the
analysis of the relation of patterns. Here we reach the fundamental
justification for the topic of Plato's lecture. Having regard to the
immensity of its subject matter, mathematics, even modern mathe-
matics, is a science in its babyhood. If civilization continues to
advance in the next two thousand years, the overwhelming novelty in
human thought will be the dominance of mathematical understanding.5

The paradox is now fully established that the utmost abstractions are
the true weapons with which to control our thoughts on concrete fact6

In short, all mathematics is applicable.
The second major problem in the production of well-motivated graduates

capable of being useful mathematicians is that of motivation. It faces all teachers in
a world where mathophobia is, at best, prevalent or, at worst, regarded as a virtue.
No person can be a successful mathematician unless he enjoys the subject well
enough to do the work required to overcome Ms mathophobia. Fortunately, history
abounds with reports of people in whom the enjoyment of mathematics appears
inherent

I would like to make a slight digression at this point to single out Pierre de
Fermat (1601-65), the mathematician from history who epitomizes, for me, the
spirit of the mathematician. That spirit is seen to a greater or lesser degree in many
of the men who have advanced mathematics through the centuries, but Fermat is a
mathematician whose mathematics is not beset by illness, tragedy or overriding
philosophical considerations. By profession he was a lawyer; Ms mathematics was
his all-consuming hobby for he felt that, because of his position as a magistrate and
jurist, he had to hold himself aloof from all social contact to avoid any hint of
corruption. He was fortunate to live at a time when it was possible to be an expert in
all fields of mathematics and to apply that mathematics—a time when most
mathematicians did not need to answer for their mathematical behaviour and
worked only with those of similar tastes. He is regarded as a co-founder of the
branches of co-ordinate geometry (with Descartes) and probability theory (with
Pascal). It is felt by some that, if he had not been too modest to publish his work, he
would have pre-empted Newton and Leibniz in the discovery of the calculus. He
preferred to communicate his ideas to friends through letters or through Marin

'Quoted inF. E, Browder and S. MacLane,' The relevance of mathematics', in L. A. Steen(ed),
Mathematics Today; Twelve Informal Essays (New York, Springer-Verlag, 1978), 348-9.

* Quoted in L. A. Steen, 'Mathematics today', in Steen, Mathematics Today: Twelve Informal
Essays, 5.
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Mersenne, the mathematical clearing-house of the time. His newly discovered
results were often posed as problems so that his friends could obtain enjoyment
from solving them for themselves. He applied his results on maxima and minima
and his principle of least time to a systematic study of optics. His greatest
contribution was to number theory where he contributed many ideas, usually
without proof, which led to great development in the subject as his successors tried
to justify Ms results. One such idea, Ms famous Last Theorem, states that for every
natural number n greater than 2, there do not exist three natural numbers a, b, c for
wMch an + bn = cn. TMs well-known conjecture appeared in the margin of his
Latin translation of Diophantus' Arithmetica opposite a discussion on Pythago-
rean triples, that is, natural numbers a, b, c satisfying a1 + b2 = c2 so that they can
be the lengths of the sides of a right-angled triangle. Fermat added that he had a
beautiful proof of the result w Wch space did not allow him to write out in the margin.
TMs problem is typical of many problems in number theory: so easy to state that
anyone with a Mgh-school mathematics education can understand it, but very
difficult to solve. Many people have contributed proofs showing that the result is
true for an extremely large number of values of {«, a, by c), but no one has yet been
able, even with the aid of computers, to come up with a proof covering all cases.

However, for those who do not have an inherent love of mathematics it is
essential that motivation be supplied for them by their parents or teachers.

In an attempt to find out what else motivates the study of mathematics I decided
to seek an Mstorical answer to the question, 'Mathematics: Applications = Pro-
gress?', the title of this lecture. Put another way: does the usefulness of a branch of
mathematics help to stimulate the study and further development of that branch of
mathematics? Several other Mstorical pointers will be considered as well.

Most written records that survive are formalized and polished accounts of
results containing little or no record of the ideas that stimulated them; so it is often
impossible to decide the motivation for the study of particular topics. For example,
our knowledge of ancient mathematics is dependent on two early Mstories. One by
Herodotus claims that the geometry of the Egyptians was that of6 rope stretchers*
whose sole interest was the re-surveying of property boundaries after the flooding
of the Nile. The other by Aristotle claims that geometry stemmed from the priests
who had the leisure to pursue its study and who used their results as a form of ritual
rope stretcMng for laying out their temples.

The Mesopotamian and Egyptian ages appear as ones where a fair amount of
progress was made in arithmetic, algebra and geometry for purely practical
reasons. Some problems found on a Babylonian tablet have the ring of modern-day
first-form practical problems; for example, cover a road 100 km long by 1 mm wide
with asphalt and compute how many days' wages it costs. Freudenthal,7 commenting
on this and similar problems, wonders if Babylonian schoolboys queried the use of

7 H. Freudenthal, Mathematics as an Educational Task (Dordrecht, Reichel, 1973), 2,
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solving such problems and whether they received the same spurious replies from
parents and teachers as their modem-day counterparts.

The next period is one of great development in mathematics based in Greece
and Alexandria In Greece mathematics was divided very firmly into two parts,
that of the business place and that studied by the thinkers of the day. It is the latter
whose history is remembered. Their mathematics was pure, their results obtained
by deductive reasoning from self-evident truths called axioms, and patterns were
sought However, the axioms and arguments were based on the known physical
world and the mathematicians depended for inspiration, unwittingly maybe, on
their environment Euclidian geometry, long admired as the model deductive
system and used for many applications to physical problems, was the geometry of a
finite flat-earth society.

A similar approach basing the design of the world on the natural numbers,
f 1,2, 3.. .}, soon required modification following the discovery that, no matter how
small the unit of measure used, it is impossible to express the ratio of the length of a
side of a square to the length of its diagonal in terms of natural numbers—the
discovery of what are called the irrational numbers.

Greeks in the first part of this period studied geometry and numbers for their
own sake, but the period was a long and non-homogeneous one. The Alexandrian
period, of about 300 years, was one of applied mathematics where, inter alia, the
known results of geometry and arithmetic were applied to astronomy, geography,
optics and mechanics. The applications seem to have come after the mathematics
and, contrary to the hypothesis that mathematics advances most effectively when
in touch with reality, there was little advance in mathematics at this stage.
However, the applications, although very good, were limited by the mysticism
given to mathematics by the Greeks. The world was assumed to be a sphere
because a sphere is a perfect form and the planets' motions were described by a
highly complex system of circles, circles also being of pure form.

In 200 B.C. the Greek geometer, Appolonius of Perga, produced a systematic
study of the conic sections, the curves being obtained by cutting a double-sided
cone with various planes. This work, in translated form, allowed Kepler in 1604 to
replace the highly complicated description of the motion of planets, given in terms
of circles by Ptolemy and Copernicus, by a very simple one based on elliptical
orbits about a sun placed at one focus of the ellipse. Kepler also replaced the notion
that the planets travelled at a constant speed (God is constant so the motion of the
planets, which must be perfect, should be constant) with one in which the speed
varied but the area swept out by the planet in a unit of time was constant

This time delay of 1,800 years between pure mathematical discovery and
application has been greatly reduced in modem times. Browder and MacLane8 give
the following examples of the reduced time between major pure mathematical
discoveries and their applications:

8 Browder and MacLane, 'The relevance of mathematics', 327.
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(a) Cayley invented matrix theory in 1860 and subsequently applied
it as a part of pure mathematics to describe linear geometric
transformations. Sixty-five years later Werner Heisenberg used
Cayley's ideas as a tool in quantum mechanics.

(b) Einstein applied tensor calculus as a tool in his theory of relativity
thirty years after its development by Italian geometers in the
1870s.

(c) Eigenfunction expansion of differential and integral operators was
developed between 1906 and 1910 and applied twenty years later
in wave mechanics.

During the Alexandrian period Euclid published his Elements, the influence of
which on the teaching and direction of mathematics lasts till this day. Euclid's
books were well written for their time though Ms teachings were difficult to follow
as instanced by two quotations, the first from Proclus Diadochus and the other from
Samuel Taylor Coleridge's introduction to Ms translation of Book I of Euclid's
Elements into verse:

Ptolemy once asked Euclid whether there were any shorter way to
knowledge than by the Elements whereupon Euclid answered that
there was no Royal Road to Geometry.9

I have often been surprised that Mathematics, the quintessence of
Truth, should have found admirers so few and so languid. Frequent
considerations and minute scrutiny have at length unravelled the cause
viz—that though reason is feasted, imagination is starved—whilst
reason is luxuriating in its proper paradise, imagination is wearily
travelling on a dreary desert. To assist reason by stimulus of
imagination is the design of the following production.10

Unfortunately, Coleridge's criticism applies not only to Euclid's Elements but to
many books and lectures since produced His lament about the paucity of admirers
of mathematics is put in another way by Paul R. Halmos: 'It saddens me that
educated people don't even know that my subject exists.'11 It is interesting to note
that Halmos' very well written book, Naive Set Theory, was parodied by a lecturer
in philosophy at the Australian National University as a form of protest against the
introduction of Modern Mathematics into the Australian High School syllabuses.

The decline of Greek mathematics seems to be attributable to several causes
among which was a move away from the advancement of the subject matter to the
writing of commentaries on the books of the day, though this was to be extremely
beneficial to the later development of mathematics. Another was the failure to
apply algebra to geometry, although the theory of conies devised by Appolonius
came close to the successful seventeenth-century algebraic geometry of Descartes.
At the end of the era of Greek mathematics, Diophantus wrote an excellent book,

9 Quoted in C. B. Boyer, A History of Mathematics (New York, J. Wiley, 1968), 111.
10Quoted in Mathematical Digest\l980), XXXVIII , title page.
II Quoted in Steen, Mathematics Today, 1.
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Arithmetical on algebra, containing Ideas far in advance of many later developments.
However, Diophantus was no geometer, and Ms contemporary geometer, Pappus,
was no algebraist—a definite indication of lack of application causing lack of
progress.

European civilization developed through the Roman Empire, while math-
ematical development took place in India, China and the Arab countries. The
Roman Empire and its resultant civilization did little to advance mathematics in
Europe. It was only the Renaissance translations of the great Greek and Arabian
texts into Latin and their distribution to the centres of Renaissance learning that led
to the development of mathematics in Europe.

Consideration of the negative effect of the Roman Empire and pre-Renaissance
Europe on the progress of mathematics may help towards the solution of the
problem of motivation in mathematics by indicating some pitfalls to avoid. Three
large negative contributions of the Romans and the Church centred on Rome were:

(a) the burning of the library at Alexandria with its large collection of
books as a result of a Caesar's attempt to burn the Egyptian fleet
riding at harbour there;

(b) the closure in 5 27 of the pagan philosophical schools by Justinian
who felt they were a threat to Christianity in the area;

(c) the inadvertent killing of Archimedes while he was deep in
contemplation of a mathematical drawing.

Archimedes was one of the greatest Greek applied mathematicians, having devised
a number system that could express a number large enough to count the grains of
sand in the universe, in addition to Ms well known results on buoyancy and levers.
He developed military machines and catapults to protect his native Syracuse from
Roman attack and used the reflective powers of parabolic mirrors to set fire to the
Roman fleet One of Archimedes' methods of raising water from rivers inspired the
development in Zimbabwe of a new water wheel illustrated in Professor Harlen's
inaugural lecture. However, Archimedes sought to be remembered by what he
considered his greatest achievement, a pure mathematical result:

If a sphere is inscribed in a cylinder, the ratio of the volume of the
sphere to the volume of the cylinder is as two is to three and that of the
surface areas of the two solids Is also as two is to three.

Marcellus, the Roman commander whose orders not to kill Archimedes were
disobeyed, complied with Archimedes' request and constructed a tomb for
Archimedes on which was inscribed a diagram of a sphere inscribed in a cylinder
above the figures 2 :3 . This allowed one of the leading mathematical commentators
of our time to make the crack that Rome's greatest contribution to mathematics was
the construction of Archimedes' tomb. (Gauss in 1850 similarly requested that a
seventeengon be inscribed on his tombstone to commemorate his greatest
achievement, the proof that a regular seventeen-sided plane igure can be
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constructed using straight edge and compasses only; but his request was not
complied with as the mason felt that he could not carve the figure in any way that
would make it distinguishable from a circle.)

The Romans were practical men in accord with Lord Beaconsfield's definition
of practical men as those that repeat the errors of their forefathers. Alfred North
Whitehead describes them as 'being cursed by the sterility that waits on
practicability'.12 True, they had great engineering works; but their engineering was
done by rale-of-thumb methods using only sufficient mathematics, borrowed from
the Greeks, to achieve their aims. Cicero bragged that Romans were not dreamers
as the Greeks were, but applied their study of mathematics to the useful: 'We have
established as the limit of this art its usefulness in measuring and counting'.13

The Romans preferred to foster development in medicine and agriculture—an
omen for the present?

It is probably unfair to single out the Romans for criticism, since mathematical
history seems to imply that mathematics was being developed almost nowhere at
any particular time. This of course is because of the lack of sources and the fact that
the interest of the historians tended to be European-centred,

The Church spread Roman learning, with its paucity of mathematics, to Europe
so that the best Europeans at the time of the Renaissance had a mathematical
ability below that of the earliest Greek mathematicians. Nor did the Church help to
foster mathematics with comments such as St Augustine's 'The good Christian
should beware of mathematicians'14—a warning based on the fact that Roman and
medieval mathematicians were often pagans and astrologers.

There is an undercurrent through Kline's book, Mathematics in Western
Culture, from which the above quotation was taken, that religion and mathematics
are incompatible. This is an unfounded proposition in my opinion. At most,
religious and mathematical thought belong to mutually exclusive sets. As Pascal
found out, you cannot decide on the existence or non-existence of God by purely
rational arguments based on nature—God's existence is an independent axiom.

The Renaissance period and the introduction of printing heralded the develop-
ment of mathematics in Europe. For various reasons scholars began to collect and
translate the mathematical texts of other cultures, their interest in mathematics
transcending social and ideological barriers. One of the prime movers of this period
was Regiomontanus, the man from 'King's Mountain', or Konigsberg. A seeker of
knowledge with a love for classical education from Greek, Latin and Arabian
sources, with a bent towards science, equally interested in practical and theoretical
studies and, most importantly for mathematics and science, the owner of a printing
press, he collected the mathematics books of Greece and Arabia and had them
printed. As a result of the endeavour of such people, the existent mathematical

' Quoted in M, Kline, Mathematics in Western Culture (New York, Pelican, 1953), 28.
'Quoted ibid, 108.
1 Quoted ibid., on cover.
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knowledge was brought to many centres, and more importantly, Greek geometry
was brought into contact with Arabian and Greek algebra. A leading book of this
period was the Summa of Inca Pacioli, which had four parts: arithmetic, algebra,
elementary Euclidian geometry and double-entry bookkeeping—one of the few
indications in mathematical history of an integration of pure mathematics with
commercial mathematics.

The period from the Renaissance to the early nineteenth century is one in which
most contributors to mathematics were both pure and applied mathematicians.
Moreover they were scientists, philosophers, medical men or engineers as well, and
this makes it difficult to decide how much influence each part had on their
mathematical development

I shall now follow the development of particular topics within the subject rather
than of mathematics as a whole.

One of the leading ideas in the development of Art was that of perspective, or
how to project a three-dimensional scene onto a two-dimensional canvas most
accurately. Many famous artists worked on the project, applying essentially
geometric ideas. Despite the interest of great men such as Leonardo da Vinci, the
possibly fruitful alliance of mathematics and Art did not achieve all it might have
because the interested parties were artists applying mathematics with no profes-
sional mathematician to guide them. The study, therefore, died out for more than a
century, before the geometers developed a suitable geometry.

The early Renaissance period saw an upsurge in the interest in algebra, and in
particular in the solution of polynomial equations. The formula for solution of the
quadratic equation was known in Babylonian times. The Arabs developed a
method of successive approximations which gave engineers and mathematical
practitioners solutions for cubic equation to any degree of accuracy required.
However, exact solutions for cubics were sought for their logical significance as
were exact solutions of higher-degree polynomial equations. The higher degree
polynomial equations were erroneously supposed to have no practical significance
as it was believed that the real world could be described in terms of linear, quadratic
and cubic equations which described length, area and volume respectively. The
work was hampered by a lack of suitable notation and the non-acceptance of
negative numbers. However, formulae built up, using the coefficients of the
equation and the operations of addition, subtraction, multiplication, division and
the taking of roots for the solution of the general cubic and quartic (degree four)
equations, were published by Cardano in his Ars Magnet of 1545. Such solutions
were called 'solutions by radicals*.

Attempts to ind a similar solution to the quintic (degree five) equation
continued, on and off, till the nineteenth century, when Abel and Galois showed
that no general solution was possible. Galois also developed a theory giving
conditions for determining when a given polynomial equation could be solved by
radicals. The methods used by Galois, Lagrange and Abel utilized ideas that are
now the basis of the abstract theory of groups. Lagrange, of an earlier generation
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than Abel and Galois, used what is essentially the theorem now known by his name
relating the number of elements in a subgroup to the number of elements in the
group before Galois coined the term 'group'. Galois talked of groups about fifty
years before the definition of a group was formalized. Today group theory is
introduced by its formal definition; Lagrange's Theorem proved early on and then
Galois' theory derived as a beautiful example of the application of a large number
of results from the theory of groups and field theory—almost the reverse of the
historical development

Abel and Galois changed the emphasis in the theory of equations from solving
particular problems to consideration of the existence of solutions, a change that
signalled great progress in algebra. (They also shared a tragic history. Abel was
dogged by poverty and resultant ill-health, dying when he was only twenty-nine. He
and Galois were unfortunate to have important papers lost by the Academy of
Sciences in Paris before they could be published To Galois it happened more than
once and he is the epitome of the misunderstood genius. He rebelled at every turn
and lost. After refusing to pay attention to school lessons which he regarded as
dreary, he was denied admission to the Ecole Polytechnique when he failed his
entrance examinations after insulting the examiner by describing the examination
questions as showing a lack of understanding of mathematics. His style of writing
was such that his papers were rejected as unintelligible. He rebelled against the
state and eventually died, aged only twenty, as the result of a duel—leaving a
mathematical legacy that took many brilliant mathematicians a long time to sort
out) The solution of polynomial equations is one example of an impractical
problem that led to a great development in mathematics.

The needs of astronomy and engineering in the Renaissance period inspired
vast improvements in the sixteenth and seventeenth centuries in trigonometrical
notation and tables and in the decimal representation of numbers, especially
fractions. An engineer, Stevin, and a Scottish laird, Napier, were largely
responsible for the current decimal representation of fractions. Napier introduced
the idea of logarithms, for the purely practical reason of speeding calculations. His
logarithms were based on geometrical ideas and everything was multiplied by ten
million to give seven-figure log tables without using decimal fractions. At about the
same time a Swiss, Jobst Burgi, developed a similar system of logarithms. The
utility of logarithms was obvious and led to their immediate acceptance and
successful application.

The development, respectively, of geometry and analysis (the study of calculus,
infinite series and infinite processes in general) were complementary and at times
so successful that interest was drawn away from other topics to the detriment of a
balanced development of mathematics.

In the early Renaissance period the interest was in elementary geometry as the
geometry of the Greeks was too sophisticated for the people of the time, whose
mathematics was based on the equally stultifying extremes of the practical Roman
approach and the mystical astrological approach. One of the leading algebraists of
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the time, Cardano, whose scientific researches were modern in approach, was still
held by the mysticism of the past and regarded himself as an expert astrologer. He is
reputed to have prognosticated the date of his own death and to have committed
suicide on the day to maintain his reputation as an astrologer.

Interest in the more advanced geometric theories was aroused after Galileo
and Kepler had applied Appolonius' Conies to their studies of the motion of bodies
on earth and in the heavens. These applications of mathematics to physics renewed
interest in the harmony of the universe and stimulated the use of the rational
mathematical approach in the study of other subjects. Some people took the idea to
extremes; Kepler, for example, is reputed to have applied mathematics to the
selection of a new wife, after the wealthy heiress whom he married had died.
Unfortunately, the girl selected, with true feminine disregard of mathematics,
refused to marry Mm and he had to settle for one of lower rating.

Galileo, Stevin and Kepler also re-established interest in the study of infinite
processes and infinitesimals by their interest in Archimedean physics. Eudoxus in
the fourth century B.C. had applied a method, similar to the modern theory of limits,
called the method of exhaustion, to the problem of finding the length of curves. As
his work led through a long maze to the calculus of Newton and Liebniz, he can
probably be regarded as the initiator of analysis. Archimedes in the third century
B.C. used the method of exhaustion to resolve arc-length, area and volume
problems, and his use of the method inspired the trio mentioned above. Stevin
found centres of gravity by dividing unusual shapes up into an infinite number of
infinitely small regular shapes which 'filled' the irregular shape. He used the noted
fact that the more regular divisions that were fitted into the irregular shape the
smaller was the portion of the irregular shape outside the regular shapes. Kepler
used a similar method to study areas inside the elliptical orbits of planets. Galileo
applied the notion of the infinitely small to Ms dynamics. He even had degrees of
infinity, explaining that objects stayed on the rotating earth because the infinitely
small distance they had to fall to stay on the earth was infinitely small compared
with the infinitely small distance they would travel along the tangent to the surface.
Therefore, Ms theory of projectiles implies that they would remain on the earth.

Another great boost to analysis and its applicability to p hysical problems came
from the application of algebraic methods to geometry. Algebra replaced the
geometric and visual intuition of synthetic Greek geometry with routine calcula-
tions. Despite the very applicable nature of the results, the motives of the initiators
of the algebraic approach were extremely pure. Descartes' La Geometric was, as
Appolonius' Conies had been, a triumph of impractical theory, being part of
Descartes' development of an overall philosophy of life. His co-initiator, Fermat,
however, had his feet more firmly on mathematical ground. The new geometry,
today synonymous with analytic geometry, was a very powerful and general tool.
Its use in solving successfully and easily some difficult problems led to its rapid
acceptance by the mathematicians of the day. It found ready applications to
problems involving lengths of paths and areas under curves, a subject that led
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eventually to integral calculus. So although analytic geometry started as a pure
mathematical theory it very rapidly became an applied mathematical tool.

Despite the fact that much of the mathematics involved was pure mathematics,
there can be little doubt that the impetus for and the direction of the development of
analysis came from the needs of applications. Throughout its history, the
theoretical development of analysis lagged behind its uses and the subject is largely
taught in this manner today. The history is too full to give an adequate account of it
in the short time available here, but I want to select a few examples to show how
mathematicians derived results without the fall theoretical backing required for
their justification and the effect that this had on the later development of
mathematics.

Wallis, one of the greatest English mathematicians before Newton, gained
many useful results by a non-rigorous method of incomplete induction. In this
method, mathematical induction—a finite process—was extrapolated to apply
intuitively to infinite processes, a result that had no rigorous foundation. Worse
still, after proving his result for positive whole numbers he assumed them to be true
for negative, fractional and even irrational numbers, coming up with correct results
more often than not

Newton and Liebeiz developed much of their theory by ignoring second order
infinitesimals, and by carrying over without justification the ideas and methods of
finite polynomial theory to infinite series. At no time did either grasp the
fundamentals of the mathematics that they used. However, they had a faith in their
intuition and method. Their methods were often criticized. For instance a Dutch
physician and geometer, Bemhard Nieuwentijt, did not deny the correctness of
their results but objected to the vagueness of Newton's methods and the lack of a
clear definition of Liebniz' s differentials of higher order. Rolle and Varignon sought
to eliminate some of the problems by showing that the methods were reconcilable
with the geometry of Euclid which was at that time held in high regard: to the
religious it was represented as expressing the laws of God; to the non-religious it
was held up as the source of all nature's immutable laws—objections were
overruled as old-fashioned and outmoded.

One of Newton's strongest critics was Bishop George Berkeley, who made a
scathing attack on the basis of calculus in a tract, The Analyst, published in 1734.
The attack was not prompted by dissatisfaction with the results but by the
shattering of a sick friend's Christian faith by arguments put forward by Halley (of
Comet fame), a leading proponent of calculus. However, Berkeley hit the theory at
its weakest spot and subsequent attempts by British mathematicians to rigorize
their mathematics, admittedly in the wrong direction, led to a stagnant period in
British mathematics over the next century. This put Britain a century behind
continental Europe in analysis and probably accounted for the rise in algebra in
Britain in the nineteenth century.

Although the attempts of the algebraists to find solutions of polynomial
equations led to the introduction of negative numbers and complex (imaginary)
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Lobatchevsky and Bolyai had the courage to publish their results, which were
ignored by the mathematics community as a whole, although Lobatchevsky was
sacked as Professor of Mathematics at Kazan as a result. Their results gained
partial acceptance only after the posthumous publication of Gauss' similar results,
Gauss having a much greater reputation. Fuller acceptance of the results followed
the construction of a model, called a pseudosphere, in which all the axioms of
Gauss, Lobatchevsky and Bolyai held and in which several of their results were
meaningfully illustrated. In the model, 'lines' were defined as geodesies, curves of
shortest distance between points on the surface.

Bemhard Riemann (1826-66) took a different approach to non-Euclidean
geometry. He distinguished between 'infinite' and 'unending' (a circle is finite but
unending) replacing the axiom OD infinite extension of lines by an axiom on
unending extension of lines. His ideas led Mm to replace the parallel axiom by one
which assumed all lines eventually met; that is, he replaced 'one line parallel to the
given line' by 'no lines parallel to the given line'. Curiously, his ideas led to a
geometry with more than one straight line through two given points, and all
perpendiculars to a given line meeting in a single point; and with triangles having an
angle sum greater than 180°, and increasing with area. His geometry was modelled
by using a sphere—the real world—with straight lines interpreted as geodesies, in
this case, great circles centred at the centre of the sphere. The thorough acceptance
of his theory and of the possibility of non-Euclidean geometries came when
Einstein used a Riemannian-type geometry to produce a new theory of the
movement of the planets that was simpler and more fundamental than Newton's,
Einstein did for Riemannian geometry what Kepler did for Appolonius' theory of
conies.

Does this mean that Euclidean geometry is false and its application invalid? No!
Euclidean geometry is valid as it is based on a set of independent non- contradictory
axioms and is logically deduced from those axioms. Equally its applications are valid
in any model that can be shown to satisfy these axioms. The new geometries merely
give alternative ways of interpreting the physical world.

Mathematics was now free of the constraint that its axioms were naturally
occurring and inviolate, that it was tied to the physical world. The price of this new-
found freedom had to be paid If the axioms and the resultant theory were to be
independent of the physical world, the terms used and theorems proved had to be
precisely stated. No longer could half the definition be left to a mathematical'you
know', or the proof to an intuitive notion.

New geometries emerged rapidly and this proliferation led to a new application
of group theory. Klein became Professor of Mathematics at Erlangen in 1872 and
in his inaugural address outlined what has become known as the Eriangen
Programme which resulted in the various geometries being thought of as branches
of one overall theory and not as many separate theories. He described geometry as
the study of properties of figures that remained invariant under particular groups of
transformations; for instance Euclidean geometry is the study of properties that
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remain invariant under rigid transformations that move figures without disturbing
their size or shape, the idea most of us learned in Form I for superimposing two
triangles on one another to determine whether they were congruent or not

Euclidean geometry has fallen into disrepute and lost its importance in school
syllabuses more, I feel, because it is difficult to teach and leam than because it is
now old-fashioned and no longer the force it once was in applications. However, its
long tradition in mathematics means that it still implicitly pervades many
mathematical theories and its absence from school curricula is making it harder for
modern students to cope with their university studies.

In the nineteenth century algebra underwent a similar axiomatic revolution.
Attempts were made to extend the notions of complex numbers. The system of
numbers had been enriched through the centuries by extension; from the natural
numbers {1, 2, 3 . . . } ; to the rationals {? \a, b natural numbers!; to the irrationals,
the Greek incommensurables; to the positive and negative numbers; to the complex
numbers required to solve all polynomial equations. Was this a continuing process
or had the end been reached? Hamilton discovered that no extension was possible
unless the commutative rale ab = ba was discarded. Cayley's matrices were also
found to violate this law and algebra was freed of the need to restrict its ideas to old-
fashioned 'natural5 laws. Once again, and this time in the United States more than
anywhere, mathematicians sought to find out what happened if the various laws of
algebra were denied, giving rise to a spate of new algebras. As with geometry,
abstract algebra with its underlying group theory was brought in to unify the
theories into a cohesive ordered whole.

Mathematicians in the nineteenth century became increasingly aware of the
need to put mathematics onto a sound basis that unified its many theories; theories
different on the surface but with many underlying common themes. The notion of a
set and the age-old axiomatic-deductive method were chosen as the basis of the
new abstract theories. But the lesson was still not learned. Close scrutiny of
the underlying mathematical logic came up with paradoxes in the initial free and
easy notion of set An example of such a paradox is:

If the barber in the town shaves those and only those men who do not
shave themselves, who shaves the barber? An assumption that the
barber shaves himself leads to a contradiction of the fact that the barber
shaves only those who do not shave themselves, whereas the other
hypothesis, that the barber does not shave himself, leads to the
conclusion that he must shave himself.

This paradox is a male chauvinist one as it assumes that the barber is a man. The
contradiction inherent in the paradox would lead a non-discriminatory person to
the conclusion that the barber is a woman. Still, the point was taken from these
and other paradoxes, and the twentieth century has seen attempts to lay firm logical
foundations for mathematics, though most mathematicians have accepted that the
logicians have or will come up with a sound basis for their field and press on
regardless.
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numbers of the form a + ib (i being the imaginary square route of-1), it was the
analysts who found these numbers most useful. D'Alembert, in 1752, used them in
a paper on the resistance of fluids treating them exactly as if they were ordinary
numbers without justification. On the other hand, d'Alembert introduced the
'limit' concept into calculus in an attempt to shore up its shaky foundations.
However, his presentation of his results lacked a clear-cut phraseology and they
were ignored by mathematicians. Fortunately, Cauchy came along later to present
the correct approach to the limit concept and used it to put analysis on a sounder
logical footing.

It is unfortunately a theme recurring throughout mathematical history that good
results are often handicapped by almost unintelligible presentation. I have already
cited the example of Galois. The geometry of Descartes almost failed to gain
recognition because his presentation omitted many points of detail that he found
elementary but which were essential for the understanding of the argument by
ordinary mortals. Fortunately others came along who amplified Ms works and it
was these amplified versions that were snapped up and used, not the original.
Newton was reputedly very poor at communicating his ideas. Here was a man who
had a profound influence on the direction of science and mathematics yet whose
students often absented themselves from his lectures because they derived nothing
from them.

Fortunately there were others whose teaching, writings and notations were
clear. Standing head and shoulders above all other mathematicians as far as
volume of publication is concerned is Leonard Euler (1707-83)). One of his books
is the basis for most twentieth-century calculus texts. Another, which he dictated
after going blind to one of Ms domestic workers, had a particularly clear exposition.
There are many instances of poor notation delaying the progress of mathematics,
but Euler, a great innovator of notations, did much to improve the clarity and
representation of mathematical problems. He was also not above taking short cuts
to applications of Ms mathematical ideas, often preferring intuition to rigorous
proof. His use of divergent series where convergent ones were needed gave much
cause for concern among Ms successors.

So the story continues, culminating with Fourier whose brilliant application of
Fourier Series to physical problems was based on' a feeling' that all functions could
be expanded as Fourier Series. A growing feeling that the analysts were skating on
thin ice was accelerated by the discovery of naturally occurring pathological
functions which could not be fitted into Fourier's general theory using methods
deduced before that time. (Mathematicians now know that Fourier's Theorem is
not true for all functions, and have spent over a century developing new theories to
prove its truth for increasingly more functions. The boundary between the
functions for which it holds and those for which it does not has still to be found.)

The problems with the foundations of analysis led to an increasing use of rigour,
to increasing questioning of the foundations of mathematics, and to more abstract
and pure forms of mathematics. One of the results of increasing questioning of
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fundamentals was to have a profound effect on mathematics as a whole. That was In
the field of geometry. Euclid's Ten Axioms were regarded as sound when he
postulated them. Two thousand years of working with them to obtain a vast
quantity of results which had been applied to solve problems on the very complex
patterns of nature had served to reinforce belief in their soundness. Mathematics,
because of the indisputability of Euclidian geometry, was almost equatable with
'Truth', However, two axioms gave cause for concern, even to Euclid. They both
involved infinite extension of lines—the axiom that said a straight line could be
extended indefinitely in either direction; and the parallel or fifth axiom, that
through a given point not on a given line, one and only one line (in the plane of the
given point and given line) can be drawn that does not meet the given line, no matter
how far either is extended (alternatively there is one and only one line parallel to the
given line through a given point). But man's experience is limited to a finite part of
the universe so infinite extensions of lines is beyond his experience and these
axioms cannot be regarded as self-evident truths. Consider parallel railway lines,
which appear to converge. Mathematicians therefore decided to justify the fifth
axiom by:

(a) deducing it from the others; or

(b) assuming a new axiom, contrary to the parallel axiom, and then
using the other nine axioms to arrive at a contradiction. Logically
this would show that the contradictions of the fifth axiom were
false and so the fifth axiom had to be true.

Saccheri followed the reductio ad absurdum idea of the second approach, and in
1773, after having failed to arrive at a contradiction, could not overcome 2,000
years of tradition. He gave up his researches claiming Euclid had been vindicated.
Gauss followed the same line of reasoning in the earlier part of the nineteenth
century when mathematics was more susceptible to the questioning of its
foundations. He came up with the same results but made the correct conclusion:
'Other geometries could be as valid as Euclid's'. However, he did not have the
courage to publish.

Two Eastern Europeans, Lobatchevsky and Boly ai, assuming that through any
point it was possible to draw at least two lines parallel to a given line and that
Euclid's other nine axioms held, derived result after result by pure deductive
reasoning. They continued even though some of their results were surprising,
seemed ridiculous and contradicted visual representation. For instance:

(a) The angle sum of a triangle was less than 180° and became smaller
the larger the area of the triangle. Gauss even experimented with
this idea by placing men on peaks of adjacent mountains using
measuring devices to determine the angle sizes of the triangle they
formed, but his results were inconclusive.

(b) Similar triangles (ones of the same shape but possibly different
sizes) were always congruent (equal in all respects), contrary to
Euclidean geometry.
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The increasing abstraction of mathematics has meant an increasingly universal
theory, raising a hope expressed in a comment by Bourbaki (a group of
mathematicians, not a single mathematician): 'mathematic not mathematics'.
However, many penalties have had to be paid. The greater care required at each
stage has meant that no one can hope to be an expert in all fields. To derive benefit
from the abstraction:

(a) Intuition must be played down.

(b) The terminology must be precise and esoteric so that someone
new to the subject has to learn a vast list of new terms before he can
get down to the interesting and enjoyable manipulation of those
terms to produce results. This is often sufficient to deter people
before they start

(c) The translation of an applied problem into a mathematical one and
the translation of the mathematical answer into an applied answer
often takes longer than the solution of the mathematical problem. I
recently came across a paper which consisted of a couple of pages
of translation of a problem into its equivalent in another field
where the answer was immediately obvious.

I shall draw no conclusion from the above discussion as there are so many other
factors involved.

Mathematics is not only a utilitarian subject; it is also an absorbing and
interesting hobby. For instance, Pascal was a dilettante mathematician who
abandoned his mathematics for theology after a religious experience. Yet one night
after this conversion when unable to sleep because of toothache he set himself a
mathematics problem and became so absorbed in solving it that his pain was
forgotten. He also constructed and sold several calculating machines. When a
friend sought his help in solving a problem on the equitable distribution of the stakes
after an interrupted game of dice, Pascal got together with Ferniat to establish the
modern theory of probability.

There are many unusual and fascinating non-examinable results in mathe-
matics that time and the demands of other subjects force out of mathematics
curricula. These can, and for some enterprising people do, make an interesting,
stimulating and enjoyable leisure activity. There are many instances throughout
history, a few of which I have pointed out, where a piece of very pure mathematics
has turned out to be highly applicable—too many for any piece of mathematics to
be safely regarded as useless. To quote-Kline: 'To insist that each step in a chain of
even geometric reasoning be meaningful, is to rob mathematics and science of two
thousand years of development'.15 Mathematical problems are rarely dreamed up
by mathematicians; they seem to present themselves for solution in both pure and
applied mathematics.

15 Kline, Mathematics in Western Culture, 482.
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I am biased, I enjoy pure mathematics and regret that I cannot persuade more
people to try it long enough to enjoy it and discover that it is a worthwhile study. Let
me close by quoting C, J. Keyset: 'The golden age of mathematics—that was not
the age of Euclid—it is ours'.16

16 Quoted in Boyer, A History of Mathematics, 649.


