File Copy R. Chase 1976 Research Report

MONTCALM EXPERIMENTAL FARM

Michigan State University Agricultural Experiment Station

ACKNOWLEDGMENTS

Research personnel working at the Montcalm Branch Experiment Station have received much assistance in various ways. A special thanks is due each of these individuals, private companies and government agencies who have made this research possible. Many valuable contributions in the way of fertilizers, chemicals, seed, equipment, technical assistance, personal services, and monetary grants were received and are hereby gratefully acknowledged.

Special recognition is given to Mr. Theron Comden for his devoted cooperation and assistance in many of the day-to-day operations and personal services.

TABLE OF CONTENTS

INTRODUCTION, WEATHER AND GENERAL MANAGEMENT
Potato Yield Trials 1976 N.R. Thompson, R.W. Chase, E. Meister & R.B. Kitchen 4
The Effect of Type of Seed Piece and Size for Growth, Yield and Quality of Russet Burbank Ron Troyer and R.W. Chase
Fertilizer Studies With Potatoes M.L. Vitosh and D.A. Hyde
Weed Control in the Production Management System R.W. Chase, W.F. Meggitt, Richard Kitchen & Robert Bond 14
Herbicide-Insecticide Interactions on Potatoes A.L. Wells, R.W. Chase and W.F. Meggitt
Effect of Pre-Storage Seed Treatment on Potato Production H. Spencer Potter
Crop Rotation and the Influence of Root-Lesion Nematodes on Michigan Potato Production G.W. Bird
Influence of Experimental Nematicides on Control of Root-Lesion Nematodes and Potato Yields G.W. Bird
Insecticide Evaluation on Potatoes Arthur L. Wells
Validation of Potato Pest On-Line Computer Simulation G.W. Bird
Corn Hybrids, Plant Population and Irrigation E.C. Rossman and Bary Darling
1976 Weed Control Studies on Pickling Cucumber, Peas and Snap Beans A.R. Putnam, Paul F. Boldt and A. Paul Love 65
Influence of Nematicides and Subsoiling Beneath the Planting Row on the Development and Yield of Navy and Kidney Bean Plants
G.W. Bird

Page

MONTCALM BRANCH EXPERIMENT STATION RESEARCH REPORT

R.W. Chase and M.H. Erdmann, Coordinators Department of Crop and Soil Sciences

INTRODUCTION

The Montcalm Branch Experiment Station was established in 1966 with the first experiments initiated in 1967. This report marks the completion of ten years of studies. The 40-acre facility is leased from Mr. Theron Comden and is located in west-central Michigan, one mile west of Entrican. The farm is used primarily for research on potatoes and is located in the heart of a major potato producing area.

This report is designed to coordinate all of the research obtained at this facility during 1976. Much of the data herein reported represents projects in various stages of progress; so results and interpretations may not be final. <u>RESULTS PRESENTED HERE SHOULD BE TREATED AS A PROGRESS REPORT ONLY</u> as data from repeated trials are necessary before definite conclusions and recommendations can be made.

WEATHER

Tables 1 and 2 summarize the 9-year temperature and rainfall data. Average maximum temperature for April was unusually high particularly in comparison with 1975 and the 9-year average. Temperatures from April 14 to 18 ranged from 78 to 84 and many days were in the 60's. May, however, was a cooler than usual month with the balance of the growing season about normal.

The rainfall distribution however was 10 inches less in 1976 than 1975 and about 5 inches below the 9-year average. July, August and September were far below the 9-year average which necessitated the need for more intensive irrigation. The total rainfall recorded from April through September was the second lowest since records were initiated at the Farm in 1968.

Irrigation applications of approximately one inch each were made 14 times (July 9, 12, 17, 22, 26 and August 2, 6, 10, 18, 21, 24, 27, 30 and September 7).

SOIL TESTS

For specific projects where more detailed analysis are needed the results are in the individual reports. Soil test results for the general plot area are:

	Po	ounds p	per Acr	e
рH	Р	K	Ca	Mg
6.7	360	288	778	<u>Mg</u> 209

	Ar	oril	Ma	ay	Ju	ne	Ju	ıly	Aug	ust	Septe	mber	6-mo aver	
Year	Max	Min	Max	Min	Max	Min	Max		Max	Min	Max	Min	Max	Min
1968 1969 1970 1971 1972 1973 1974	61 56 54 53 47 54 57	37 35 35 31 30 36 36	62 67 65 65 70 63 62	41 43 47 39 47 42 41	74 70 72 81 72 77 73	53 50 55 56 50 58 52	80 80 82 79 79 81	55 59 60 55 57 60 57	81 82 80 80 76 80 77	58 56 57 53 57 60 56	74 73 70 73 69 73 68	50 49 51 54 49 48 45	73 74 73 76 73 74 70	50 49 45 48 48 51 48
1975 1976	48 58	28 35	73 63	48 41	75 79	56 57	80 81	57 58	79 80	58 53	65 70	44 46	70 71	49 48
9-year average	54	34	66	43	75	54	80	58	79	56	71	48		

Table 1. The 9-year summary of recorded maximum and minimum temperatures during the growing season at the Montcalm Branch Experiment Station.

Table 2. The 9-year summary of precipitation (inches per month) recorded the growing season at the Montcalm Station.

Year	April	May	June	July	August	September	Total
1968 1969 1970 1971 1972 1973 1974 1975 1976	2.84 3.33 2.42 1.59 1.35 3.25 4.07 1.81 3.27	4.90 3.65 4.09 0.93 1.96 3.91 4.83 2.05 4.03	3.74 6.18 4.62 1.50 2.51 4.34 4.69 4.98 4.22	1.23 2.63 3.67 1.22 3.83 2.36 2.39 2.71 1.50	$1.31 \\ 1.79 \\ 6.54 \\ 2.67 \\ 7.28 \\ 3.94 \\ 6.18 \\ 11.25 \\ 1.44$	3.30 0.58 7.18 4.00 2.60 1.33 1.81 3.07 1.40	17.32 18.16 28.52 11.91 19.53 19.13 23.97 25.87 15.86
9-year average	2.66	3.37	4.09	2.39	4.71	2.81	20.0

- 2 -

FERTILIZERS USED

Except for the specific fertility studies where the fertilizers are specified in the report, the following fertilizers were used on the potato plot area:

Banded at planting - 20-10-10 - 650 lbs/A Sidedressed - 45-0-0 - 200 lbs/A Red clover plowed down.

HERBICIDES

1

Preemergence - metribuzin (Sencor) 1/2 lbs/A + alachlor (Lasso) at 1-1/2 qts/A May 14.

Directed postemergence - metribuzin (Sencor) 1/4 lbs/A June 21 and 22.

DISEASE AND INSECT CONTROL

The systemic insecticide Temik was applied at planting at 3 pounds per acre.

Foliar fungicide and insecticide sprays, applied with an air blast sprayer, were as follows:

June 25	Sevin
July 24	Bravo + Thiodan
July 31	Bravo + Monitor
August 7	Bravo + Monitor
August 18	Bravo + Monitor
August 27	Bravo + Thiodan
September 6	Bravo + Cygon

POTATO YIELD TRIALS 1976

N.R. Thompson, R.W. Chase, E. Meister and R.B. Kitchen Department of Crop and Soil Sciences

Twenty-five advanced seedlings and named varieties were planted at the Montcalm Research Farm in three blocks to permit harvests on August 10, September 1 and September 20.

Yield of marketable tubers, total solids, chip ratings and after cooking darkening are shown in the following tables. Several cultivars demonstrated characteristics desirable in our Michigan program and will be increased for seed.

When harvested August 10, the two seedlings AK37-19 and MS 002-171 produced equally high yields of US #1 potatoes that made exceptionally good potato chips. The total solids of the seedling AK37-19 were very high. MS 002-171 is a yellow fleshed potato with higher than average total solids. The Atlantic variety, while lower in yield, possessed high solids and made excellent chips. At later harvests AK37-19 and Atlantic increased in yield, maintained the high solids and chipped well. Two seedlings MS 706-34 and MS 711-8 exceeded 400 cwt/A. These are general purpose table varieties that store and cook well and have demonstrated the high yield over a period of years. Limited amounts of seed of these two seedlings are available for increase in seed programs. The seedling 003-69, a yellow flesh potato, makes excellent chips at harvest and after storage and reconditioning. It normally produces an average yield but its chip record over the past three years could make it very useful.

Several newer seedlings in the replicated yield trials or in seedling increase plots will be included in trials in 1977.

Varieties Selected for Increase 1977 Table Stock

Variety	Marketable cwt/A	Specific Gravity	Chip <u>Rating</u>
	Early - Aug	gust 10	
235-2	255	1.087	4
	Mid-Season - Se	eptember 1	
706-34	449	1.079	3
711-8	413	1.077	3
235-2	396	1.083	4
AK37-5	374	1.081	4
	Late - Septe	ember 20	
706-34	470	1.075	5
711-8	372	1.077	4
AK37-5	365	1.083	4
	Yellow Fl	esh	
002-302	298	1.091	1
003-69	289	1.090	1

Seedling Increase Plots 1976 Planted May 13 - Harvested September 20

Seedling	Marketable tubers cwt/A	Maturity*	Specific Gravity	Chip <u>Rating</u>
102-2	326	м	1.095	4
103-54	355	М	1.081	1
105-2	377	M	1.090	2
108-5	370	VL	1.097	4
203-2	304	Е	1.085	1
231-2	304	Е	1.081	5
305-15	507	L	1.078	6
305-17	312	VL	1.086	4
305-19	312	L	1.099	4
305-22	341	Е	1.076	6
305-24	326	Е	1.072	7
307-1	283	L	1.102	3
307-6	341	VL	1.100	4

* E - early, M = medium, L = late, VL = very late When compared to Katahdin maturity.

Variety	Marketable tubers cwt/A	Specific Gravity	Chip* rat <u>Harvest</u>	ting 50 ⁰ 2 mos.		cooking ening** <u>24 hrs.</u>
706-34	449	1.079	3	6	3	3
AK37-19	435	1.106	2	7	1	1
711-8	413	1.077	3	5	1	3
235-2	396	1.083	4	3	4	4
A6789-7	394	1.080	3	4	1	2
Atlantic	388	1.100	1	2	3	3
Snowchip	382	1.081	5	5	3	3
645-2	380	1.082	4	2	2	2
231-2	378	1.081	5	4	2	2
709	376	1.078	3	7	2	3
AK37-5	374	1.081	4	6	2	2
305-15	357	1.075	5	5	2	2
002-408	357	1.092	2	2	1	2
Bellisle	351	1.094	5	5	3	3
645-1	351	1.091	2	5	1	1
103-59	347	1.092	4	6	1	2
007-201	346	1.070	4	7	1	2
Bison	322	1.073	4	1	2	2
503	318	1.082	3	5	2	3
002-171	312	1.082	2	8	3	4
002-302	298	1.091	1	1	2	2
004-198	298	1.086	1	1	2	2
003-69	289	1.090	2	8	1	1
Wischip	244	1.078	1	1	3	3
Centennial Russet	234	1.079	5	1	2	2

Yield Trial 1976 - Second Harvest Montcalm Research Station September 1

- 1

*Scale 1 white, 10 dark, 3 or less acceptable. **Scale 1 white, 5 dark, 3 or less acceptable.

Yield Trial 1976 - First Harvest Montcalm Research Station August 10

	Marketable		
	tubers	Specific	Chip
Variety	<u>cwt/A</u>	<u>Gravity</u>	Rating
AK37-19	314	1.101	2
002-171	293	1.086	1
004–198	263	1.084	2
645-2	261	1.083	4
235-2	255	1.087	4
Atlantic	252	1.100	1
007-201	244	1.068	3
709	240	1.081	3
Bison	236	1.076	4
AK37-5	234	1.078	5
706-34	232	1.075	6
503	228	1.081	3
003–69	226	1.095	2
Snowchip	211	1.080	3
645–1	199	1.087	6
002-302	193	1.090	2
103-59	187	1.087	4
Centennial Russet	187	1.082	5
711-8	185	1.076	4
Wischip	181	1.080	3
A6789-7	156	1.073	7
Bellisle	154	1.081	6

- 7 -

Varieties Selected for Increase 1977 Processing

Variety	Marketable 	Specific Gravity	Chip <u>Rating</u>
	Early - Harves	sted August 10	
AK37-19	314	1.101	2
002-171	293	1.086	1
004-198	263	1.084	2
Atlantic	251	1.100	1
1	Mid-Season - Harve	ested September	1
AK37-19	435	1.106	2
A6789-7	394	1.080	3
Atlantic	388	1.100	1
002-408	357	1.092	2
	Late - Harveste	ed September 20	
103-59	425	1.095	3
A6789-7	404	1.082	3 2
AK37-19	376	1.102	2
002-408	365	1.090	2

.

- 8 -

THE EFFECT OF TYPE OF SEED PIECE AND SIZE ON GROWTH, YIELD AND QUALITY OF RUSSET BURBANK

Ron Troyer and R.W. Chase Department of Crop and Soil Sciences

A study was conducted in 1976 to evaluate the effect of seed piece type and size on the growth and yield of Russet Burbank potatoes. Whole and cut seed were compared using 1, $1\frac{1}{2}$, 2 and $2\frac{1}{2}$ ounce seed pieces of each type. Whole tubers were selected and sized for each category and 6 to 8 ounce tubers were selected from which the properly sized seed pieces were cut. The cut seed pieces were obtained from a comparable position (apical) from each tuber to avoid differences which might occur due to using an apical or stem end seed piece. The tubers were cut and well suberized before planting. Ten seed pieces were hand planted per plot with four replications. Observations were made on emergence and growth. At harvest, number of stems, number of tubers and yield were determined for each hill.

RESULTS

Table 1 summarizes the yield for each seed type and size. The one ounce seed piece for both the whole and cut seed resulted in smallest yields. Current recommendations for seed piece size are $1\frac{1}{2}$ to 2 ounces. Except for the two ounce the cut seed tended toward greater yields, however, this difference was not significant. The reduced yield of the two ounce cut seed is inconsistent with the trend of the yields from the $1\frac{1}{2}$ or $2\frac{1}{2}$ seed size.

There was an increasing number of tubers per hill as seed piece size increased (Table 2). Whole seed had a greater number of tubers per hill, however, this was not a significant difference. The number of tubers per hill closely related to the numbers of stems per hill (Table 3). Again there were more stems with the larger seed pieces and a greater number with whole vs. the cut seed. There was no effect from any of these variables on specific gravity readings.

These data tend to substantiate the current recommendation for using a l_{2}^{L} to 2 ounce seed piece. There was a yield reduction from using seed of one ounce or smaller whether whole or cut.

- 9 -

Seed		Seed	l Size		
Туре	<u>1.0 oz.</u>	<u>1.5 oz.</u>	2.0 oz.	2.5 oz.	Average
Whole	353	388	408	410	390
Cut	377	431	387	455	413
Average	366	410	397	432	

Table 1. The total yield (cwt/A) of Russet Burbank potatoes planted with two seed types of four sizes.

Table 2. The total <u>number of tubers harvested per hill</u> of Russet Burbank potatoes planted with two seed types of four sizes.

Seed Type	1.0 oz.	<u>1.5 oz.</u>	2.0 oz.	2.5 oz.	Average
Whole	6.7	7.5	8.3	8.9	7.8
Cut	6.3	7.1	7.4	8.2	7.3
Average	6.5	7.3	7.9	8.5	

Table 3. <u>Number of stems per hill</u> of Russet Burbank potatoes planted with two seed types and four sizes.

Seed					
Type	<u>1.0 oz.</u>	1.5 oz.	2.0 oz.	2.5 oz.	Average
Whole	3.0	3.5	4.4	4.6	3.9
Cut	2.7	3.1	3.6	4.0	3.3
Average	2.8	3.3	4.0	4.3	

FERTILIZER STUDIES WITH POTATOES

M.L. Vitosh and D.A. Hyde Department of Crop and Soil Sciences

Two fertilizer studies were conducted with potatoes in 1976 at the Montcalm Experimental Farm. N-SERVE, a nitrification inhibitor, was evaluated at four rates of nitrogen, 0, 50, 100 and 150 pounds of N per acre on Russet Burbank potatoes. The nitrogen was applied as anhydrous ammonia, knifed into the soil April 13 several weeks before planting. Three rates of nitrogen were compared with and without one-half pound of N-SERVE. In addition, all plots received 650 pounds of a 20-10-10 starter fertilizer banded at planting time.

Potato yield, size and specific gravity measurements were taken on each plot and the data are presented in Table 1. Total yield was significantly reduced at the 100 and 150 pound rates when N-SERVE was used. These findings support research information from Wisconsin and Indiana indicating that potatoes prefer nitratenitrogen rather than ammonium-nitrogen. N-SERVE at these two rates gave a smaller percentage of large tubers (over 10 oz.) but a larger percent of knobby tubers. Specific gravity was increased at the 50 pound rate but decreased at the 150 pound rate.

A starter fertilizer study was established at the Montcalm Experimental Farm to evaluate different fertilizer materials and ground-up alfalfa hay on yield and quality of potatoes. Russet Burbank was used as the test variety. The experiment was initially designed so as to create visual differences in growth for the 1976 spudtacular field day recognizing that the treatments were not necessarily a practice which potato growers might follow. The rate of the various fertilizer materials was determined by the initial setting of the planter fertilizer bins which applied 650 pounds of a 20-10-10 fertilizer. The setting for other materials was not changed since there was essentially no way to obtain equal rates of application without using some type of filler material. Thus, each material was applied using the same setting on the planter and the rate was determined primarily by the physical properties of the material and its nutrient composition.

The data for this experiment are shown in Table 2. Specific gravity ranged from 1.071 to a high of 1.080. Straight potash (0-0-60) produced the lowest specific gravity as could have been predicted by its high salt index. This treatment should also serve warning to those growers who use a fertilizer high in potassium at planting time. Mono-ammonium phosphate (12-62-0) and super phosphate (0-46-0) with no potash had the highest specific gravity. Straight urea (46-0-0) and the mixed fertilizer (20-10-10 treatment 5) had significantly lower specific gravity than the previously mentioned treatments. When alfalfa hay was banded with the mixed fertilizer, specific gravity was significantly increased (treatment 7 versus 5).

Total yield was significantly increased by the addition of N, P and K (treatments 2, 3 and 4 versus 1), however, a combination of N-P-K tended to yield slightly better, particularly mono-ammonium phosphate and the 20-10-10 fertilizer with alfalfa. What effect alfalfa hay is having on yield is not known. Additional research will be required to assess if these differences are real and what constituent of alfalfa is affecting the growth process of the potato.

Specific		DIZE DISC	ributic	n	Total Yield	
Specific Gravity	% Knobs	% Small	% Med.	% Large	cwt/ Acre	
1.078	20.7	14.5	53.0	11.8	282	
1.076	18.0	14.5	54.8	12.7	.281	
1.080	18.3	13.7	55.5	12.5	293	
1.080	16.2	11.4	54.5	17.9	323	
1.078	25.1	11.6	50.1	13.1	269	
1.080	17.0	14.1	51.4	17.5	320	
1.076	21.4	16.6	50.7	11.2	269	
0.003	5.6	N.S.	N.S.	4.7	33	
	1.076 1.080 1.080 1.078 1.080 1.076	1.07618.01.08018.31.08016.21.07825.11.08017.01.07621.4	1.076 18.0 14.5 1.080 18.3 13.7 1.080 16.2 11.4 1.078 25.1 11.6 1.080 17.0 14.1 1.076 21.4 16.6	1.07618.014.554.81.08018.313.755.51.08016.211.454.51.07825.111.650.11.08017.014.151.41.07621.416.650.7	1.07618.014.554.812.71.08018.313.755.512.51.08016.211.454.517.91.07825.111.650.113.11.08017.014.151.417.51.07621.416.650.711.2	

Table 1. Effect of nitrogen rate and "N-SERVE" on yield, specific gravity and size of irrigated Russet Burbank potatoes at the Montcalm Experimental Farm.

Planted: May 11, 1976 Row spacing: 34 inches Seed spacing: 12 inches Basic fertilizer: 650 1b 20-10-10 at planting Irrigation: 14 inches Harvested: October 7, 1976 Harvest area: 142 Sq. Ft.

Ireat	Starter ¹ Fertilizer Treatment	Fertilizer Rate	Salt Index	Specific Gravity	Knobs	Small	Medium	Large	Total Yield
	<u></u>	Lbs/A	<u></u>	g/cc		%	· • • • • •		cwt/A
1	None	0	-	1.079	26.0	14.1	48.4	11.5	243
2	46-0-0	454	75	1.077	19.6	14.1	49.4	16.9	287
3	0-46-0	681	10	1.080	25.9	11.2	47.0	15.8	298
4	0-0-60	733	116	1.071	27.0	8.8	46.6	17.7	295
5	20-10-10	650	<u>.</u>	1.076	19.0	10.4	46.7	23.8	304
6	12-62-0	611	30	1.080	17.2	12.2	52.2	18.3	315
7	20-10-10 + alfalfa	650 461	-	1.079	22.2	13.2	45.0	19.6	335
LS	D (.05)			.003	NS	3.6	NS	6.0	36

Table 2. Effect of starter fertilizer materials on size, yield and specific gravity of Russet Burbank potatoes.

1

All plots received an additional 90 pounds of N per acre sidedressed June 21

Planted: May 11, 1976 Row spacing: 34 inches Seed spacing: 12 inches Irrigation: 14 inches Harvested: October 7, 1976 Harvest area: 142 sq. ft. Soil tests: pH=6.7, P=360, K=288, Ca=778, Mg=209

- 13

1

WEED CONTROL IN THE PRODUCTION MANAGEMENT SYSTEM

R.W. Chase, W.F. Meggitt, Richard Kitchen and Robert Bond Department of Crop and Soil Sciences

PROCEDURE

Foundation seed of the Russet Burbank variety was planted on May 10, 1976. Five preplant incorporated and preemergence herbicide treatments were applied to 16 row plots and replicated three times. On June 21, at the time that urea was sidedressed and the crop was hilled, four directed, postemergence herbicide applications were made on four row plots within each preemergence treatment. The preemergence and postemergence entries were as follows:

PREEMERGENCE ENTRY	<u>lbs/A</u>	POSTEMERGENCE ENTRY	1bs/A
EPTC (Eptam) ppi	4	metribuzin (Sencor)	1 <u>4</u>
linuron (Lorox)	$1\frac{1}{2}$	metríbuzin (Sencor)	
linuron (Lorox)		+ alachlor (Lasso)	½ + 1
+ alachlor (Lasso)	$1 + 1\frac{1}{2}$	metribuzin (Sencor)	
metribuzin (Sencor)		+ alachlor (Lasso)	3/8 + 1½
+ alachlor (Lasso)	$\frac{1}{2} + \frac{1}{2}$	none – check	
metribuzin (Sencor)	12		

Weed control ratings at harvest, yields and specific gravity determinations were made.

RESULTS

There was no significant difference in the resulting total yield among any of the preemergence or postemergence treatments (Table 1). There was a lower yield in the Eptam treated plots because of inadequate broadleaf weed control. Except for this deviation there appears to be no apparent difference in yield. There was similarly no effect on specific gravity readings.

Table 2 summarizes the at harvest weed control data for each of the preemergence entries. These data show that Eptam did not adequately control the broadleaf weeds, especially barnyard grass and pigweed. The principle observation to note is the degree of barnyard grass control was not adequate. Where a known barnyard grass or a similar grassy weed problem exists, the use of materials such as EPTC (Eptam) or alachlor (Lasso) are most effective on grass.

		Directe	Directed Postemergence Treatment					
Preemergence Treatment	Sencor	Sencor + Lasso	Sencor + Lasso	None	Average			
Eptam	289	301	325	314	307			
Lorox	316	314	339	336	326			
Lorox + Lasso	364	361	359	341	356			
Sencor + Lasso	368	369	346	366	363			
Sencor	353	363	352	336	351			
Average	338	342	345	338				

Table 1. The total yield (cwt/A) of Russet Burbank potatoes when treated with different preemergence and postemergence herbicides.

Table 2. The effect of several preemergence herbicides on the control of certain weed species.

Preemergence	Weed Control Ratings*					
Treatment	Lambsquarter	Pigweed	Barnyard grass			
Eptam	3.9	2.5	8.6			
Lorox	9.8	9.3	6.2			
Lorox + Lasso	10.0	9.7	9.6			
Sencor + Lasso	10.0	9.5	9.3			
Sencor	9.8	9.0	5.5			

* Weed Control Rating 0 = no control, 10 = complete control.

Table 3. The effect of postemergence herbicides on the control of certain weed species.

Postemergence	Weed Control Ratings**					
Treatment	Lambsquarter	Pigweed	Barnyard grass			
Sencor	8.6	7.8	7.4			
Sencor + Lasso	8.8	8.4	8.2			
Sencor + Lasso	8.7	8.3	8.0			
Check-none	8.7	7.4	7.7			

* These four postemergence treatments were made on plots treated with a preemergence herbicide.

****** 0 = no control, 10 = complete control.

HERBICIDE-INSECTICIDE INTERACTIONS ON POTATOES

A.L. Wells Department of Entomology

R.W. Chase and W.F. Meggitt Department of Crop and Soil Sciences

' A study to determine the possible interaction of selected preemergence herbicides and soil systemic insecticides applied on potatoes at planting was conducted at the Montcalm Farm in 1976. The plots were established on May 10 using Superior and Russet Burbank variety seed in three replications of adjacent single 25 foot rows. The insecticides were banded with the fertilizer at the time of planting and the herbicides were applied to the soil surface in two-row plots covering both varieties and all insecticides prior to emergence of the potatoes. One plot was not treated with the systemics at planting to serve as a control for the study. Included in the herbicide component was a treatment of preplant incorporated Eptam whereas the other herbicide treatments were applied preemergence. The DiSyston treatment plot was sidedressed with another application prior to hilling. All of the plots received a full foliar program of insecticides and fungicides during the season in addition to the soil systemics.

The plots were examined carefully during emergence and periodically through the season to determine any abnormal symptoms which may have been caused by any of the herbicide or insecticide components alone or in combination with each other. The weed and insect control in the treated plots were excellent throughout the season and were not a limiting factor in the final yield except for the Eptam treatment. The plots were harvested on September 23 to determine the overall yields and size distribution of the tubers. Samples of the tubers from each plot were later checked for specific gravity. The list of herbicide and insecticide treatments and the yields of tubers from both varieties are presented in Table 1.

Results

All of the plots emerged uniformally with the systemic treatments slightly ahead of the untreated plots which has been noted in previous studies. This poor broadleaf weed control in the Eptam plot is reflected in the lower yields across all of the insect control treatments. The insect control was very good in all plots and probably did not affect the yield. The increased yields in the soil systemic plots were probably due to the early plant development which has been noted in other studies. This could be a response from nematode protection since it is most prominent in the Temik and Furadan plots. No adverse symptoms were observed on either variety which could be associated with the chemical treatments. The data are being analyzed statistically for further study.

- Table 1. List of Herbicide and Insecticide Treatments and Resulting Yields on both Varieties.
- A. List of Chemical Treatments: All treatment rates are active ingredient per acre (insecticides based on 34" rows).

Herbicide Treatments

Insecticide	e Treatments
and the second	

Eptam 7 E.C.	4 1b ppi	Control (Foliars only)
Lorox 50 W.P.	1½ 1b pre	Temik 15 G 3 1b
Sencor 50 W.P.	1/2 lb pre	Furadan 10 G 3 1b
Lorox 50 W.P.	1 1b	DiSyston 15 G 3 1b
+ Lasso 4 E.C.	1½ lb pre	
Sencor 50 W.P.	½ 1b	
+ Lasso 4 E.C.	l½ lb pre	

B. Superior Variety - Total Yields (cwt)/A

		Insecticid	le	
Herbicide	Foliars	Temik	Furadan	DiSyston
Eptam	140	220	193	163
Lorox	165	250	238	187
Sencor	174	281	250	215
Lorox + Lasso	187	257	214	185
Sencor + Lasso	161	285	213	184

C. Russet Burbank - Total Yields (cwt)/A

Herbicide	Foliars	Temik	Furadan	DiSyston
Eptam	234	269	213	249
Lorox	209	338	300	285
Sencor	269	367	330	288
Lorox + Lasso	249	351	300	273
Sencor + Lasso	236	369	325	294

EFFECT OF PRE-STORAGE SEED TREATMENT ON POTATO PRODUCTION

H. Spencer Potter Department of Botany and Plant Pathology

Tests were conducted to determine effect of pre-storage treatment of seed potatoes with fungicides and bactericides on stand improvement and productivity. In the fall of 1975 washed and unwashed seed potatoes, variety Minona, were treated before storing with 7 different fungicide and bacteriacide combinations to combat Fusarium dry rot and bacterial soft rot. Treated tubers were held in a commercial storage (temperature $40^{\circ} - 45^{\circ}$ F) from early October until the end of April 1976.

Seed was selected at random from treated tubers held in storage, rated for dry and soft rot infection.

Seed was cut and planted by hand (row width, 34", plant spacing 9") at the Montcalm Research Farm on May 11, 1976. Treatments were randomized in 2 adjacent blocks and replicated 4 times. Individual plots consisted of a single row 25" long.

Fungicide and insecticide sprays were applied at regular intervals throughout the growing season, and plots were irrigated when necessary.

A stand count was made six weeks after planting. Plots were harvested during the second week in October.

Results:

 $\mathbf{z}_{i,j}^{*}$

Treatment	Rate (PPM)	Condition of tubers			sed tubers*	Stand [*] %	Yield - U.S. #1	cwt/A [*] B
Mertect 340 + Chlorine	1500+200	washed	5	с	0 Ь	91 b	251.2 c	22.2 b
Mertect 340 + Chlorine Mertect 340 +	1500+200	unwashed	8	С	1 b	93 b	249.9 c	20.9 b
Nabac 25 EC Mertect 340 +	1500+100	washed	6	с	2 b	94 b	243.9 c	25.3a
Nabac 25 EC	1500+100	unwashed		с	1 b	96 b	284.0 d	21.1 b
Benlate 50W+ Chlorine	1500+200	washed		С	0 b	96 b	282.7 c	21.0 b
Benlate 50W+ Chlorine Benlate 50W+Nabac 25EC	1500+200 1500+100	unwashed washed	10 7	C	1 b 0 b	94 b 94 b	263.6 c 260.0 c	22.2 b 20.9 b
Benlate 50W+Nabac 25EC	1500+100	unwashed	9	с с	0 Ь	93 Ь	264.6 c	19.9 b
Topsin M + Chlorine Topsin M + Chlorine	1500+200 1500+200	washed unwashed	8 8	с с	1 b 1 b	92 b 91 b	251.5 c 253.3 c	19.0 Ь 21.6 Ь
Topsin M + Nabac 25 EC Topsin M + Nabac 25 EC		washed unwashed		с с	0 b 0 b	93 b 93 b	277.2 c 272.3 c	21.2 b 22.0 b
Bravo 6F + Chlorine Bravo 6F + Chlorine	1500+200 1500+200	washed unwashed	33at 24 t)	1 b 2 b	85a 84a	212.2 b 218.5 b	19.0 b 19.1 b
No treatment No treatment		washed unwashed	43a 29 t) .	5a 6a	79a 80ab	178.0a 190.3ab	34.4a 32.0a

*Average of 4 replications. Values followed by a common letter do not differ significantly at the 5% level (Duncan's Multiple Range Test).

<u>Summary</u>: Treatment containing Mertect Benlate and Topsin were very effective in reducing the incidence of Fusarium dry rot in stored tubers. Bacterial soft rot was kept to a minimum with the addition of either chlorine or Nabac. All treatments except for those containing Bravo improved the stand and increased yields of U.S. #1 tubers.

- 19 -

CROP ROTATION AND THE INFLUENCE OF ROOT-LESION NEMATODES ON MICHIGAN POTATO PRODUCTION

G.W. Bird Department of Entomology

The objective of this study was to evaluate the influence of various crops grown in rotation with potatoes on tuber yield losses caused by the root-lesion nematode (Pratylenchus penetrans).

A range containing five replicate plots of sudax, red clover, potatoes (Russet Burbank), corn and fallowing established at the MSU Montcalm Potato Farm in 1975 and planted with potatoes (cv Norchip) in 1976. Half of the range was maintained as soil infested with the root-lesion nematode and the other half was maintained in a relatively nematode-free environment. Nematode population density dynamics were monitored throughout the growing season, and the crop harvested.

Root-lesion nematode population densities were highest where red clover was grown in 1975 (TABLE 1). During the early part of the growing season, populations of the root-lesion nematode were significantly higher (P=0.05) where red clover was planted the previous year (TABLE 2). In the presence of Temik 15G, the previous crop had no influence on population densities; whereas, in the absence of a nematicide, there were significant differences among the populations. Nematode control had a much greater influence on tuber yields than the previous crop (TABLE 3).

TABLE 1

1975 Crop	No. pe:	r 100cm ³	No. per gram root		
	11/25/75	2/27/76	4/27/76	11/25/76	
()	11b ¹	10-	22-	0-	
Corn	dll	13a	22a	0a	
Sudax	15a	29a	51a	10a	
Red Clover	15 a	50a	80a	109b	
Potato	14ab	40a	51a	la	
Fallow	11b	lla	25a	15a	

Population densities of <u>Pratylenchus penetrans</u> following five crops at the Montcalm Potato Research Farm

¹ Column means followed by the same letter are not significantly different (P=0.05) according to the Student-Newman-Kuels Multiple Range Test.

1976 treatment and	No. per 1	.00cm ³ soil	No. per gram roo		
1975 crop	6/4/76	7/16/76	7/16/76		
<u> </u>		***			
DiSyston					
Corn	31ab ¹	7abc	3.6ab		
Sudax	41ab	15bc	12.8b		
Red Clover	55b	19c	11.8b		
Potato	30ab	la	0.8a		
Fallow	39ab	10abc	0.8a		
emik					
Corn	27ab	la	0.4a		
Sudax	21a	5ab	0.4a		
Red Clover	58b	12abc	2.4a		
Potato	17a	3ab	0.0a		
Fallow	13a	4ab	0.6a		

Influence of crop rotation and chemical control on population densities of root-lesion nematodes (Pratylenchus penetrans) associated with potato roots

1

Column means followed by the same letter are not significantly different (P=0.05) according to the Student-Newman-Kuels Multiple Range Test.

-	22	-	

TABLE 3

Influence of crop rotation and chemical control of nematodes on yields of Norchip potatoes.

1976 treatment and	Yield (ctw/acre)							
1975 crop	A's	J's	B's	Total				
DiSyston								
Corn	228abc l	0a	38c	266ab				
Sudax	203ab	0a	32b	235a				
Red Clover	192a	0a	40c	232a				
Potato	218abc	0a	41c	259ab				
Fallow	216abc	0a	39c	255a				
Temik								
Corn	295c	4ab	28ab	327c				
Sudax	288bc	4ab	32b	324c				
Red Clover	291c	9b	26a	326c				
Potato	264bc	6b	27a	297Ъс				
Fallow	298c	8b	27a	333c				

1

Column means followed by the same letter are not significantly different (P=0.05) according to the Student-Knewman-Kuels Multiple Range Test.

INFLUENCE OF EXPERIMENTAL NEMATICIDES ON CONTROL OF ROOT-LESION NEMATODES AND POTATO YIELDS

G.W. Bird Department of Entomology

Eleven formulations of nematicides were evaluated for control of rootlesion nematodes (Pratylenchus penetrans) associated with potato (cv Monona) at the Michigan State University Montcalm Potato Research Farm. Each treatment was replicated four times in a randomized block design, with each plot consisting of four rows, 34 inches apart and 50 ft in length. All of the fumigant nematicides were injected to a 6-8 inch soil depth on April 21, 1976. Soil samples for nematode analysis (Centrifugation-flotation technique) were taken from each plot immediately before application of the soil fumigants. The non-fumigant nematicides and DiSyston 15G insecticide were applied at planting on May 13, Soil and root samples from nematode analysis (centrifugation-floation and 1976. shaker techniques) were taken at mid-season (July 26, 1976) and at harvest (September 9, 1976). The center two rows of each plot were harvested, graded and analyzed for quality. During the growing season the plants were maintained under normal commercial fertility, irrigation, insect control and disease control practices.

There were no significant differences in initial soil population densities of P. penetrans among the experimental plots, and in all cases the population densities were above the estimated threshold levels for most potato cultivars grown in Michigan. There were no significant differences among the soil population densities of P. penetrans associated with the nematicide treatments during the middle of the growing season or at harvest (see table). Based on P. penetrans recovered from root tissue, the corn cob formulation of Temik 15G resulted in the best nematode control. Vorlex and Vydate 10G also appeared to lower root population densities of P. penetrans. NA 060, Dacamox 10G, Furadan 10G and the Nemacur-DiSyston 15G formulation appeared to have less than desirable nematicidal activity in this test. While similar initial population densities of P. penetrans at this site significantly (P = 0.05) reduced yields of cv Superior and cv Russet Burbank potatoes in 1973, 1974, 1975, and 1976, they did not significantly inhibit yields of Monona in this test. The corn cob formulation of Temik 15G, however, did significantly (P = 0.05) increase total tuber yield compared with the Dacomox 10G, Mocap 10G and Nemacur-DiSyston 15G treatments. The corn cob formulation of Temik 15G also significantly (P = 0.05) increased jumbo Grade yields compared with NA 061 and Nemacur-DiSyston 15G, and B Grade yields compared with Mocap 10G and Nemacur-DiSyston 15G. Three generalizations can be developed from these data; 1) Monona is very likely more tolerant to P. penetrans than Superior or Russet 2) the corn cob formulation of Temik 15G, Vorlex and Vydate 10G appeared Burbank, to suppress population densities of P. penetrans to a greater degree than the other materials evaluated in this test, and 3) NA 060, Furadan 10G, Dacamox 10G, Mocap 10G and Nemacur-DiSyston 15G did not perform as well as expected. None of the nematicide treatments had any significant influence on the specific gravity of the The plots treated with Mocap 10G suffered from poor early-season insect tubers. control. Furadan 10G would most likely have performed better if it had been applied in a band instead of in-row.

Treatment, rate per acre and		Yield (ctw/care)		Specific gravity	P. penetrans/		<u>P. penetrans/</u> g root tissue	
method of application	Total	Jumbo	A	В		100 cm soil			
		grade	grade	grade		4/23	7/26	7/26	9/13
Check (DiSyston 15G, 20 lb, in-row)	187ab ¹	44ab	139a	3.4ab	1.079a	105a	48a	83ab	115b
Vorlex, 10 gal, broadcast + DiSyston 15G, 20 lb, in-row	180ab	35ab	140a	4.lab	1.080a	79a	31a	lla	56ab
NA 061, 6.7 gal, broadcast + DiSyston 15G, 20 lb, in-row	178ab	26b	147a	5.lab	1.079a	130a	44a	85 a b	69ab
NA 060, 10 gal, broadcast + DiSyston 15G, 20 lb, in-row	176ab	37ab	136a	2.8ab	1.076a	97a	17a	100ab	91b
NA 055, 10 gal, broadcast + DiSyston 15G, 20 lb, in-row	190ab	31ab	155a	4.5ab	1.074a	47a	14a	115ab	46ab
Temik 15G, gypsum, 20 lb, in-row	192ab	45ab	144a	3.0ab	1.078a	139a	36a	23ab	34ab
Temik 15G, corn cob, 20 lb, in-row	209a	57a	148a	5.5a	1.076a	118a	30a	10a	0a
Vydate 10G, 30 1b, in-row	183ab	33ab	138a	3.9ab	1.078a	51a	18a	33ab	2ab
Nemacur-DiSyston 15G, 20 lb, in-row	160b	19b	138a -	2.7b	1.076a	60a	16a	155b	79ab
Mocap 10G, 30 lb, in-row	171b	39ab	129a	2.7b	1.075a	47a	17a	43ab	65ab
Furadan 10G, 30 lb, in-row	183ab	41ab	134a	4.9ab	1.079a	95a	58a	310b	43ab
Dacamox 10G, 30 lb, in-row	168b	43ab	126a	4.2ab	1.073a	123a	5la	261b	70ab

¹Column means followed by the same letter are not significantly different (P = 0.05) according to the Student-Newman-Kuels Multiple Range Test. - 24

INSECTICIDE EVALUATION ON POTATOES

Arthur L. Wells Department of Entomology

A study to evaluate experimental insecticides for the control of foliar insects on potatoes and their resulting yields at harvest was conducted at the Montcalm Farm. Onaway and Russet Burbank seed were used in the study to represent the early and late maturing varieties. The plots were planted on May 11 using Premier Foundation seed in three replications of paired 25 foot rows each.

The Onaway plot included ten treatments of soil systemic insecticides applied in a four inch band in the seed row at the time of planting and 20 foliar treatments applied with a CO₂ sprayer on June 18 and July 21. Five leaf samples were taken from each of the treatment plots on July 13 to evaluate the materials for potato leaf hopper nymphs and early aphid control. The plots were examined weekly after the second foliar application but aphid populations did not build up sufficiently for enumeration. The plots were harvested on August 31 and September 1 and graded for size and yields determined. The specific gravities of tuber samples from each plot were determined later. The list of treatments, insect data and harvest data are presented in Table 1.

The Russet Burbank plot included 17 treatments of soil systemic insecticides and 13 foliar treatments applied as described above on the Onaways.

Five leaf samples were taken from each of the plots on July 13 to evaluate the materials for potato leaf hopper nymphs and early aphid control. Ten sweep samples with an insect net were obtained from each plot on July 28 to further evaluate the foliage feeding insects. The plots were examined weekly for aphids but the populations did not build up. Another sweep sample was obtained on August 27 but was lost before analysis. The plots were harvested on September 22 and 23 to determine yields and specific gravities on tuber samples. The data are presented in Table 2. Table 1. Insecticide Evaluation on Onaway Variety

			Insects/15	leaves			Yields	Yields				
			Pot.Leaf				by Size					
Material and Formulation	Lb	Tox*	Hop.Nymphs	Aphids	Cwt/A	to $1\frac{7}{8}$	$1\frac{7}{8} 3\frac{1}{4}$	$3\frac{1}{4}$ +	Gran			
Soil Systemics												
Nemacur 15% - Disyston 15% G	; 12	1b	0	2	363	6	75	19	1.0757			
Disyston 15G	3	1b	1	0	335	4	80	16	1.0770			
Disyston 15G	3	1ь										
+ Disyston 15G (Sidedress)	3	1b	0	0	312	7	81	12	1.0767			
Furadan 10G	3	1Ь	0	4	319	5	83	12	1.07 9 7			
Furadan 10G	3	1Ъ										
⊬ Furadan 4F (Foliar)	1	1b	0	1	375	5	78	17	1.0770			
Dacamox 10G	3	1Ъ	0	1	334	3	81	16	1.0783			
Temik 15G	2	1b	0	0	404	4	79	17	1.0780			
Temik 15G	3	1b	·1	0	344	6	81	13	1.0773			
Temik 15G (1/2 rate N)	3	1ь	0	0	374	5	80	15	1.0790			
Temik 15G (No N)		1b	0	0	382	5	80	15	1.0787			
Foliars												
Mobil 9087 2 EC	3/	4 1Ъ	11	7	324	7	86	7	1.0780			
GCP 9646 4 EC		2 1b	47	. 1	332	5	78	, 17	1.0787			
Zolone 3 EC	•	2 10 1b	57	2	346	4	83	13	1.0750			
PP 557 2 E		oz	14	2	316	5	84	11	1.0810			
PP 557 2 E		oz oz	14	5	339	5	84	11	1.0780			
Vydate 2 E		5 1b	32	9	322	5	80	15	1.0777			
-		1b	22	9 4	322	7	80 84	9	1.0763			
Bay SRA 12869 6 EC			22	4	220	/	04	9	T*0103			
Croneton 4 E		2 1b	10	•	01/	~	70		1 07(7			
+ Guthion 2 S	+ 1/2		49	3	314	5	78	17	1.0767			
Guthion 2 S	-	2 15	64	8	357	5	87	8	1.0773			
Bay NTN 9306 6 EC		1b	8	4	333	5	82	13	1.077 0			
Bay NTN 9306 6 EC		1b	_	-								
+ Monitor 4 WM	+ 3/		4	Ŏ	309	4	79	17	1.0770			
Monitor 4 WM		4 1Ъ	13	4	337	6	80	14	1.0777			
Orthene 75 S		1Ъ	2	1	339	5	83	12	1.0780			
Furadan 4 F		1b	1	9	363	4	83	13	1.0767			
Pirimor 50 W		oz	32	7	340	7	84	9	1.0777			
SD-43775 2.4 EC		1 1b	5	1	311	6	80	14	1.077 3			
SD-41706 2.4 EC		1 1b	8	Ø	344	5	81	14	1.0793			
Thiodan 3 EC	3/	4 1Ъ	23	0	330	7	84	9	1.0790			
Imidan 50 W		1b										
+ Pirimor 50 W		οz	42	2	319	5	85	10	1.0783			
DPX 3853 2 EC	1/	2 1Ъ	8	2	306	6	83	11	1.0775			
Untreated			28	4	295	5	90	5	1.0773			
Untreated			30	6	309	6	84	10	1.0807			

*Soil treats (In-row and Sidedress) rates based on 34" rows (15,390 ft/A.). Foliar treats applied in water at 50 gal/A.

able 2. Insecticide Evaluation on Russet Burbank Variety

		Insects/15 leaves			Insects/30 Sweeps			
		Pot Leaf			Potato		Yield	Spec
aterial and Formulation	/A*	Hop: Nymphs	Aphids	Hops	Beetles	Aphids	Cwt/A	Gran
oil Systemics								
emacur 15%-Disston 15% Gran	12 Ib	5	G	6	9	3	320	1.0863
isyston 15G	3 1b	1	1	30	12	3	272	1.0870
-	3 1b 3 1b	Ŧ	Ŧ	30	12	2	212	1.00/0
isyston 15G		0	0	0	F	1	207	1 0067
+ Disyston 15G (Sidedress)	3 1b	0	0	8	5	1	287	1.0867
uradan 10G	3 1b	1	1	20	3	17	301	1.0847
uradan 10G	3 1b		^	2	0	10	21.0	1 00/0
+ Furadan 4F (Foliar)	1 1b	1	0	3	0	12	318	1.0843
acamox 10G	3 1b	0	0	6	0	8	293	1.0843
emik 15G	2 1b	1	0	7	3	3	352	1.0903
emik 15 G	3 1b	0	0	1	0	2	335	1.0867
emik 15G (1/2 rate Nitrogen)		0	0	7	0	1	341	1.0873
emik 15G (No Nitrogen)	3 1b	0	0	5	0	3	374	1.0890
acamox 10G	2 1Ъ	0	0	7	1	12	306	1.0863
S-15647 CR 10G	2 1b	6	0	6	5	6	318	1.0880
emik Gyp 15G	2 1Ъ	0	0	9	2	2	304	1.0880
emik Gyp 15G	3 1b	0	0	4	2	4	358	1.0900
C - 21865 75 WP	1-1/2 lb	2	0	13	15	0	308	1.0883
C - 21865 75 WP	3 1b	0	0	13	17	6	317	1.0887
C - 21865 75 WP	6 1b	0	0	8	4	6	311	1.0880
oliars								
roneton 4E (Bay Hox 1901)	1/2 1Ъ							
+ Guthion 2S	+ 1/2 1b	43	2	12	0	4	266	1.0840
uthion 2S	1/2 lb	47	4	10	0	3	279	1.0857
ay NTN 9306 6 EC	1 1b	27	3	11	1	2	248	1.0840
ay NTN 9306 6 EC	1 1b							
	+ 3/4 15	7	1	3	1	2	292	1.0863
onitor 4 WM	3/4 1b	10	7	7	7	4	294	1.0867
rthene 75S	1 1b	2	1	2	14	5	297	1.0860
uradan 4F	1 1b	ō	9	3	0	2	346	1.0853
irimor 50W	4 oz	34	8	3	6	ō	261	1.0843
D-43775 2.4 EC	0.1 1b	14	1	4	0	õ	292	1.0860
D-41706 2.4 EC	0.1 1b	6	2	1	Ő	5	285	1.0870
hiodan 3 EC	3/4 1b	57	17	14	8	4	276	1.0857
		ا د	1/	7.4	o	4	210	T.0031
midan 50 W L Dimimon 50 M	1 1b	1 5	5	o	2	Δ	289	1.0837
+ Pirimor 50 W	4 oz	15	5	8		0	289	1.0857
PX 3853 2 EC	1/2 1b	26	1	10	7	1		
ntreated		51	6	14	11	13	246	1.0850
ntreated		49	4	20	22	7	241	1.0860

*Soil (In-row and Sidedress) treats rates based on 34" rows (15,390 ft/A.). Foliar reats applied in water at 50 gal/A.

Results

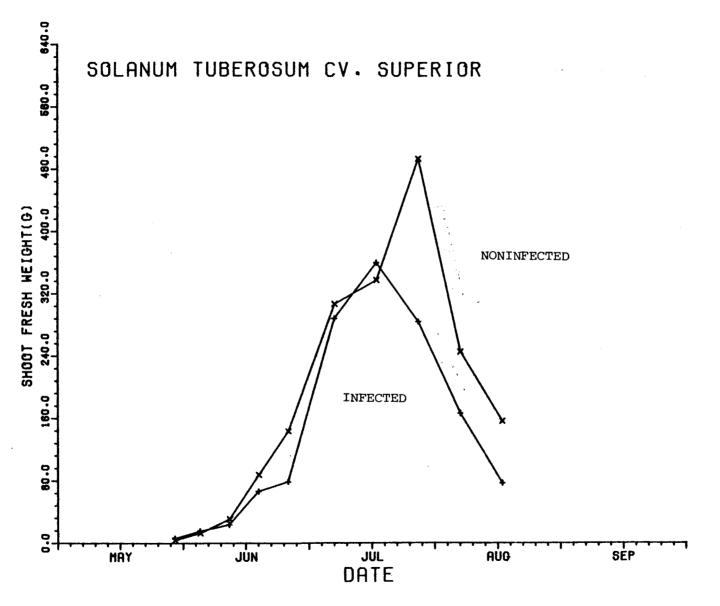
Very few aphids developed in the plots of either variety during the season although the leaf samples on July 13 indicated their presence and potential increase. The potato leaf hopper nymphs were held in check by the soil systemics and most of the foliars even though it had been over three weeks since the first foliar application. The first sweep samples indicated very few differences between any of the treatments. It is doubtful if these are statistically significant if analyzed. There is a wide variation in the yields from the different plots from either variety with the soil systemics generally higher. The apparent differences can not be explained by insect control only without further analysis. There appears to be no differences between the specific gravities of any of the tuber samples.

- 28 -

G.W. Bird Department of Entomology

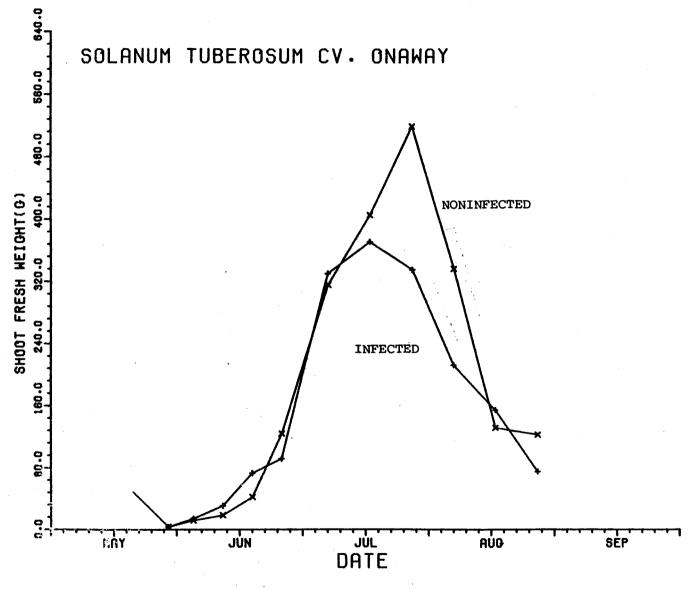
The objective of this investigation was to validate the interactive potato root-lesion nematode computer simulation developed at M.S.U., and to convert it to potato varieties of economic significance in Michigan.

Ninety-six 50 ft. rows of potatoes (32 of Superior, 32 of Onaway and 32 of Russet Burbank) were planted at the Montcalm Potato Farm (5/12/76). Half of the plants were maintained in a soil environment containing the root-lesion nematode (Pratylenchus penetrans) and half were maintained in a relatively nematode-free environment. The area was divided into eight separate blocks. Beginning on 5/21/76, 48 plants (16 from each variety, 8 from each soil environment, and 6 from each block) were harvested every seven days through 9/7/76. On each date, the following parameters were measured:

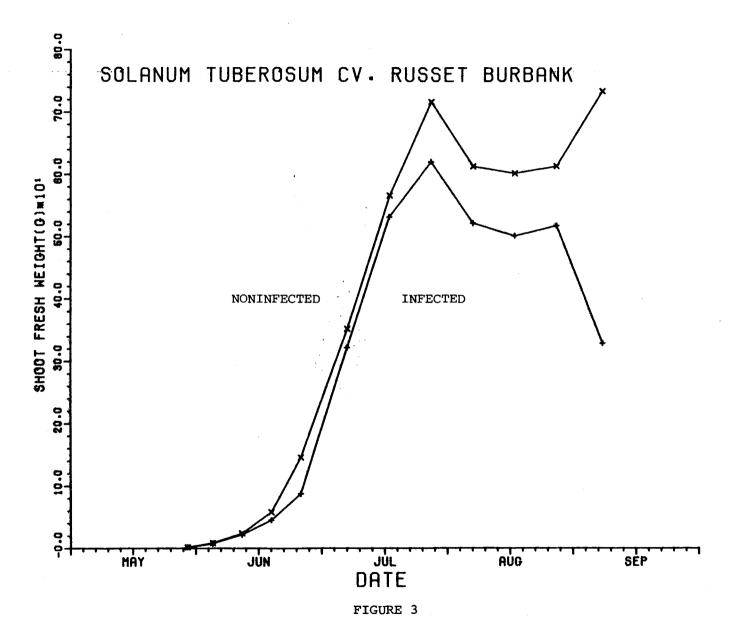

1. Tuber fresh weight

- 2. Tuber dry weight
- 3. Stolon fresh weight
- 4. Stolon dry weight
- 5. Root fresh weight
- 6. Root dry weight
- 7. Shoot fresh weight
- 8. Shoot dry weight

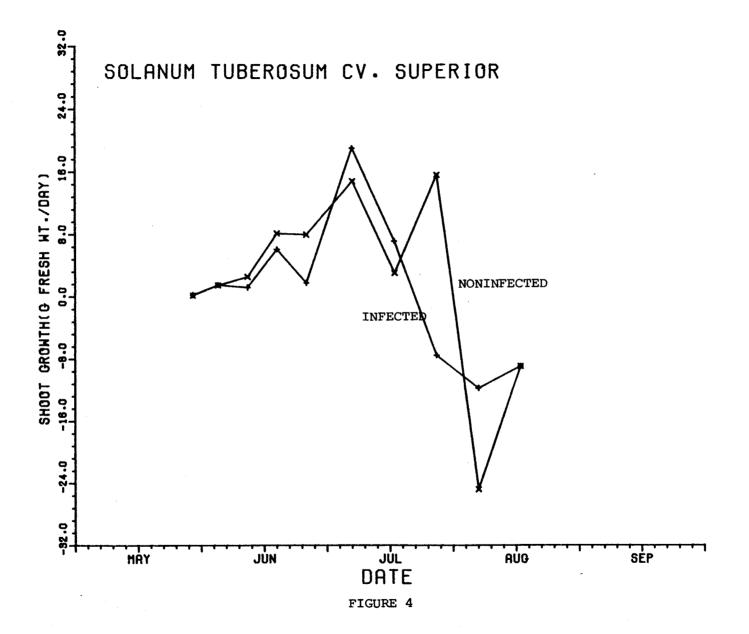
- 9. Mother tuber fresh weight
- 10. Mother tuber dry weight
- 11. Shoots per mother tuber
- 12. Root distribution
- 13. Nematodes per plant
- 14. Nematodes per gram root tissue
- 15. Nematodes per 100 cm³ soil
- 16. Number of second order roots


Some of these data are presented in Figures 1-28, and are being used to convert the M.S.U. Potato-Pest Computer Simulation from the original German varieties to Russet Burbank, Superior and Onaway. A systems scientist and several individuals employed by the M.S.U. Pest Management program are working on this project, and should be completed within the next six months. The potato simulation is unique and has been demonstrated to a diverse and large segment of the scientific community. It has been received with favor and recognition of its potential for pest-crop ecosystem prediction has been even better than expected.

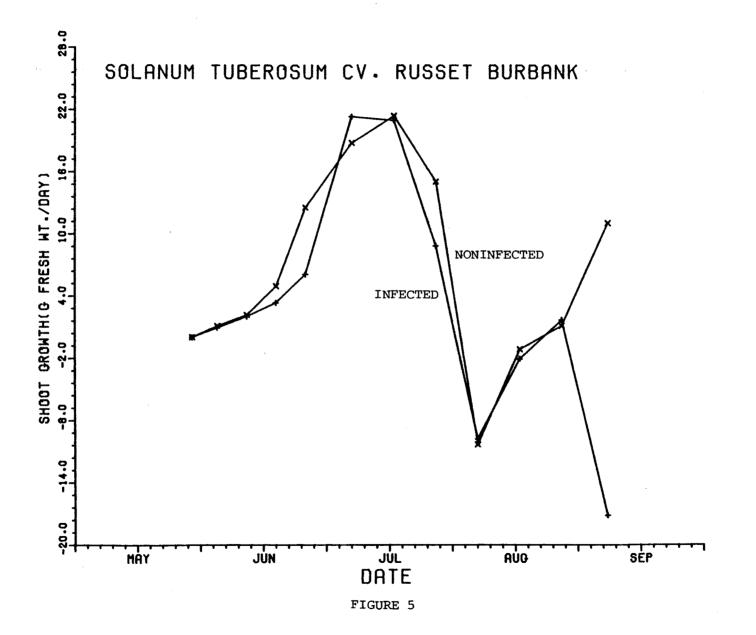
- 29 -



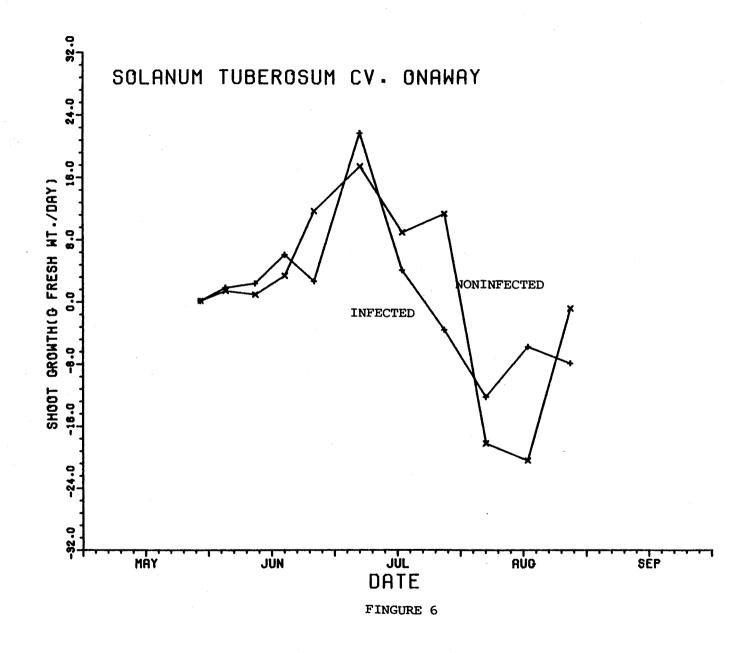
- 30 -



-31 -

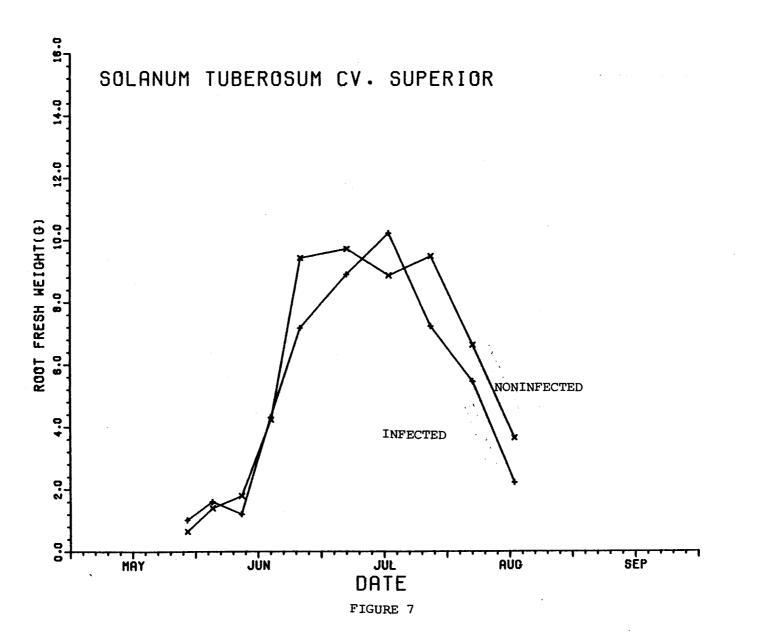


- 32 -

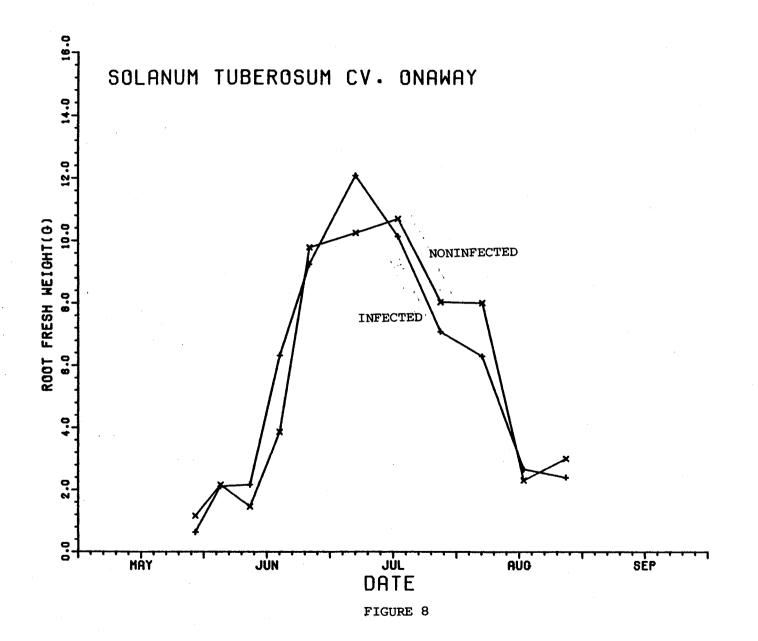


E ယ္သ T

.



- 34 -



35

ł

- 36 -

- 37

1

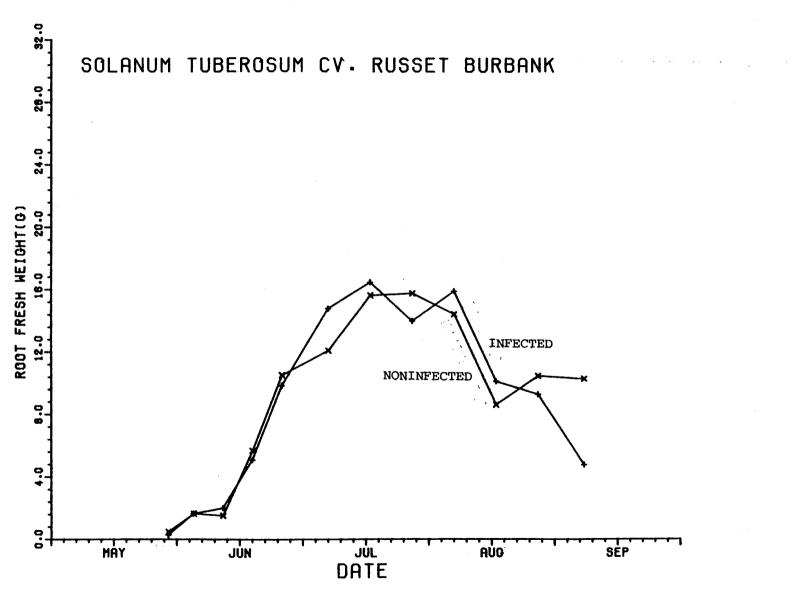


FIGURE 9

- 38 -

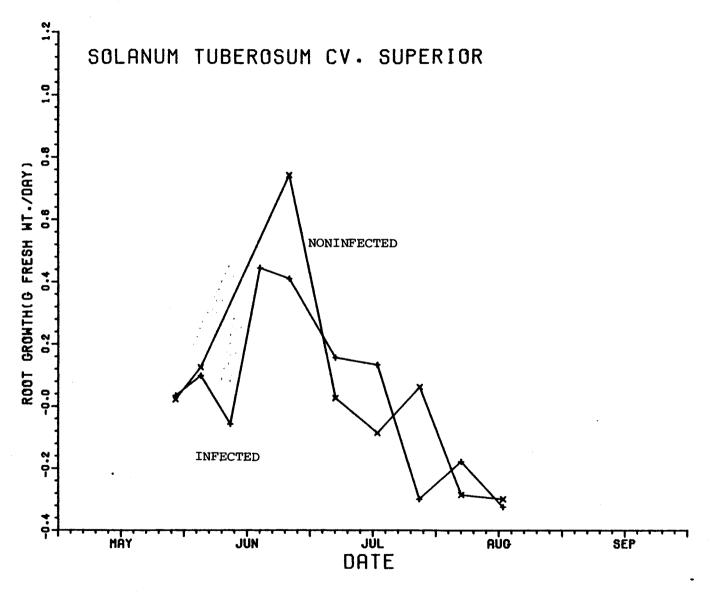
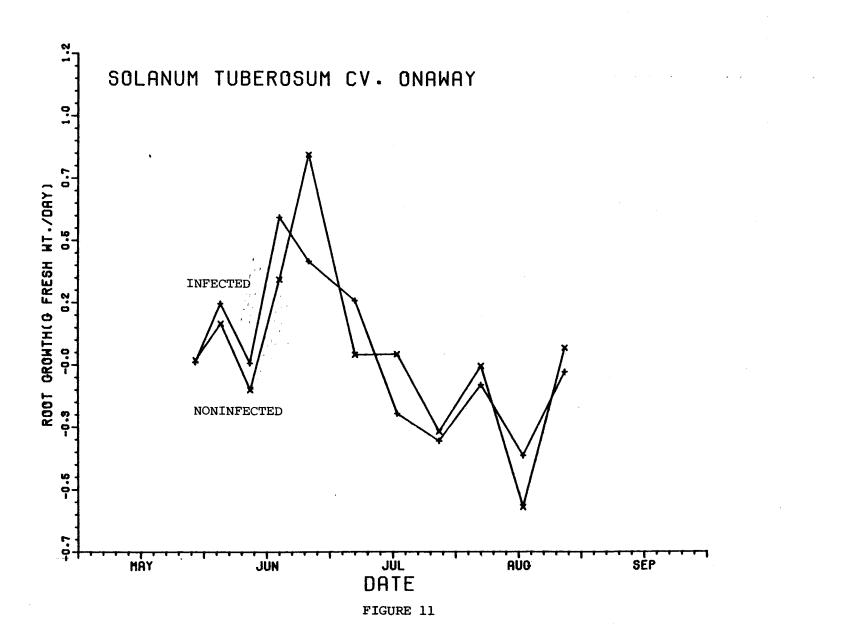



FIGURE 10

I. 39 T.

- 40 -

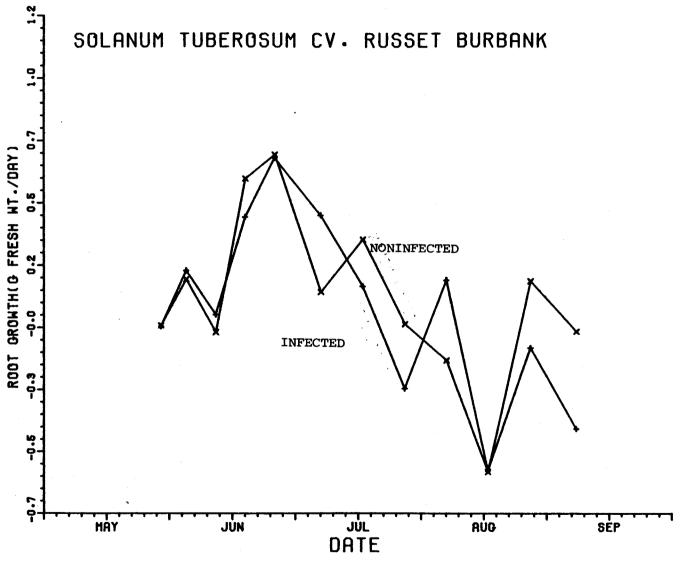
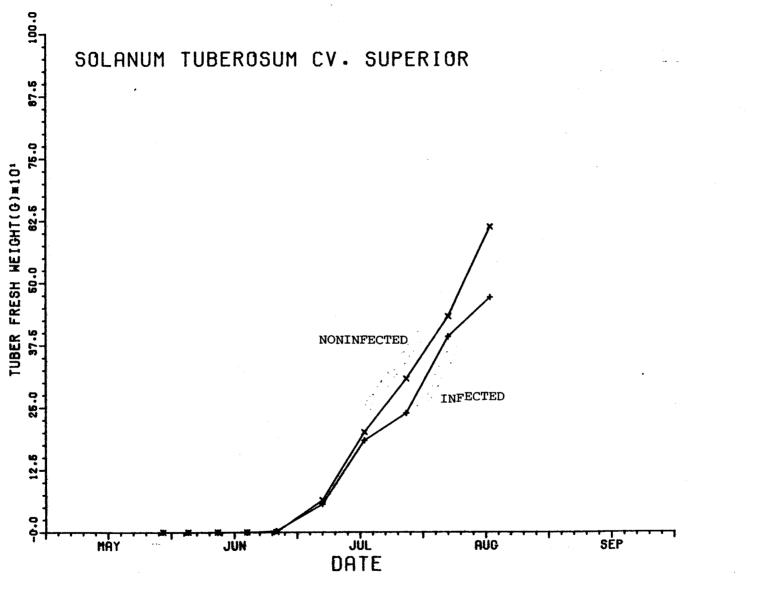



FIGURE 12

- 41

42 -

FIGURE 13

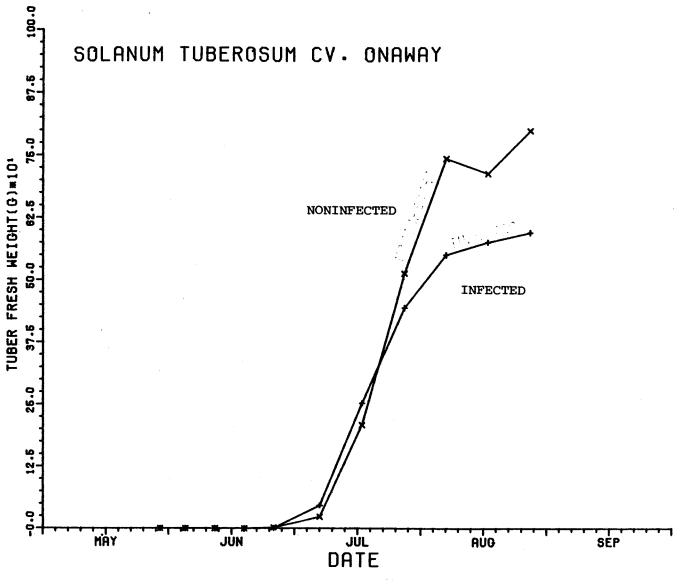
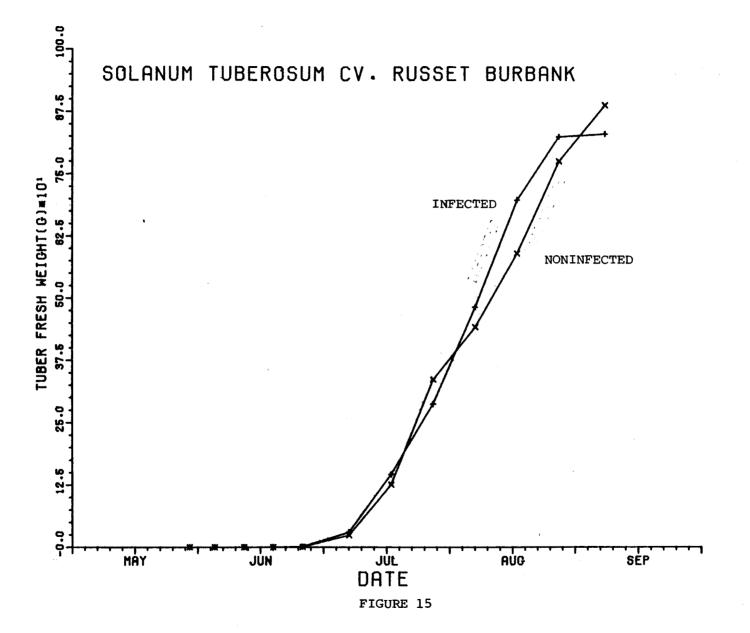



FIGURE 14

- 43 -

- 44 -

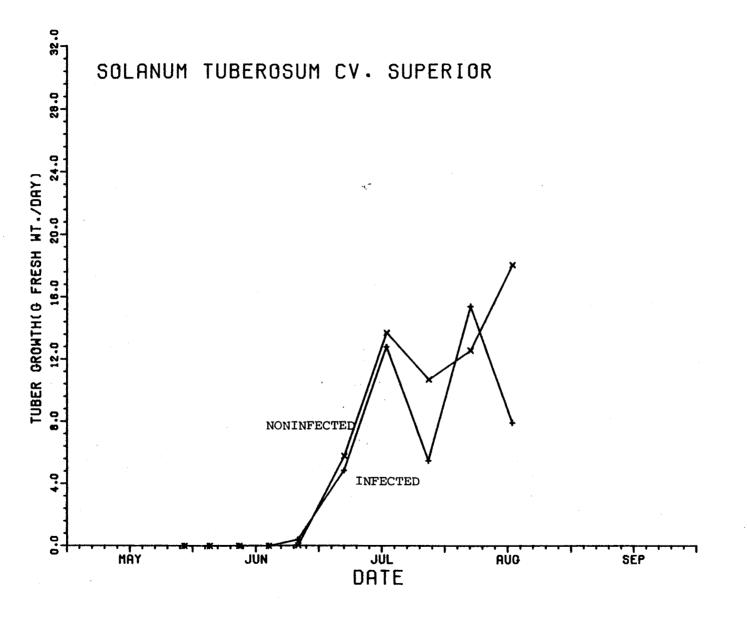
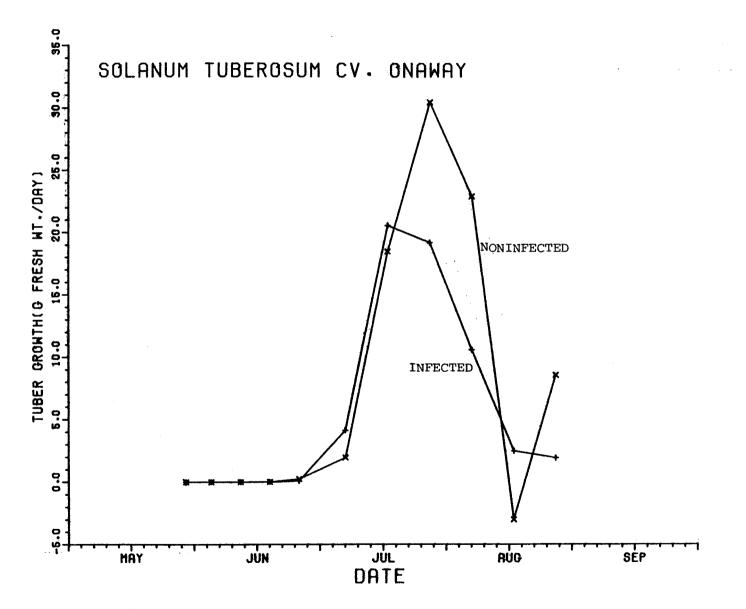
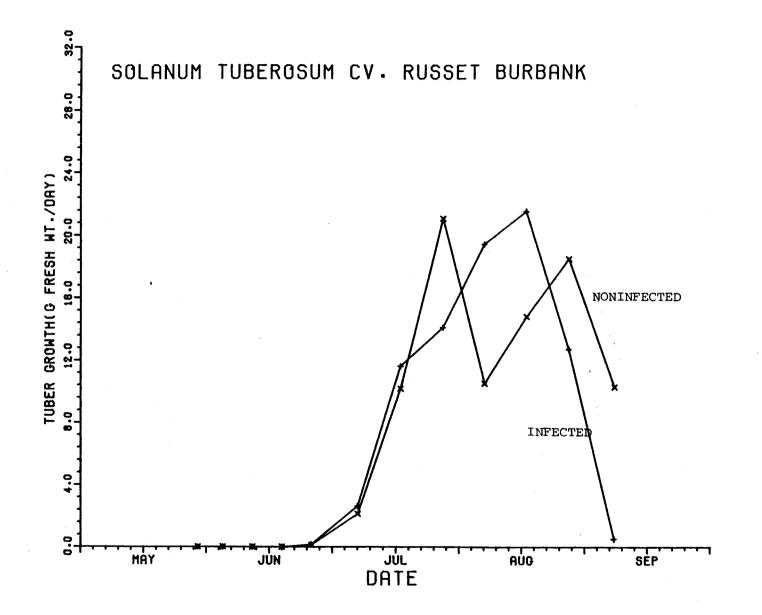
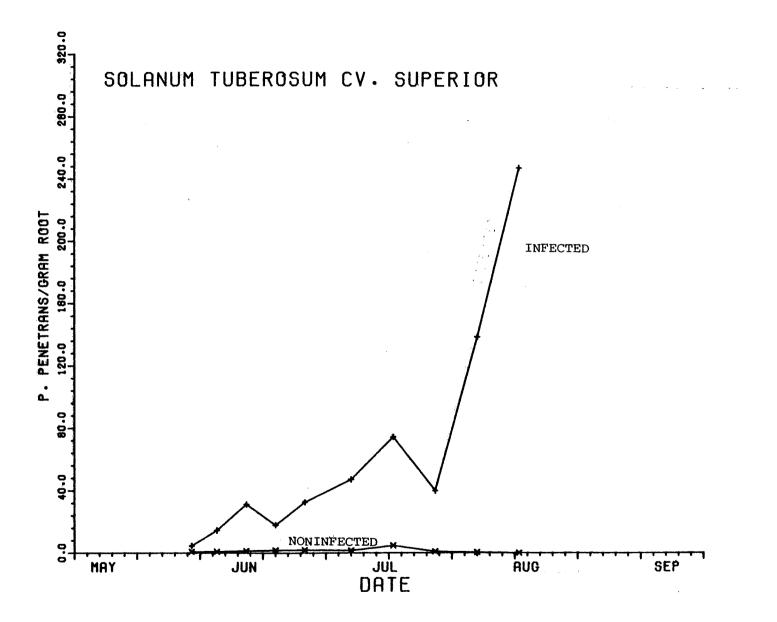
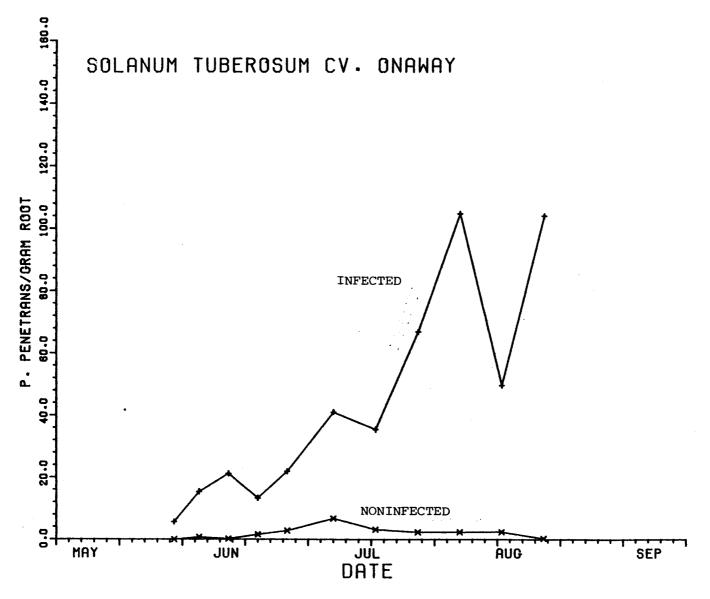



FIGURE 16

- 45 -


FIGURE 18

- 47

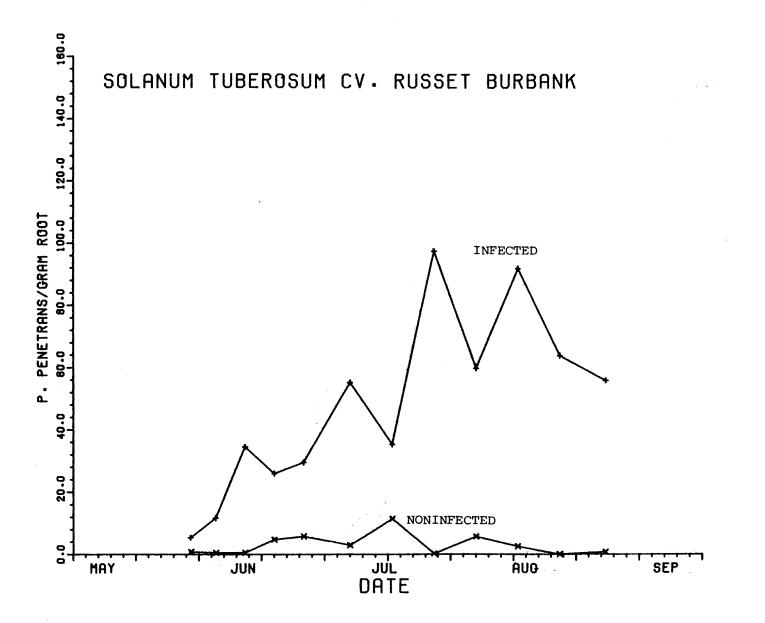
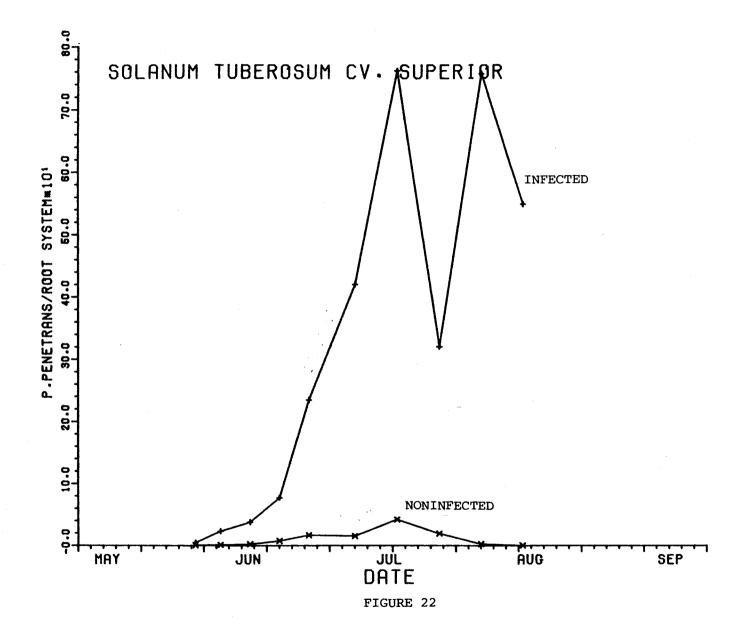

- 48 -

FIGURE 19



. 49

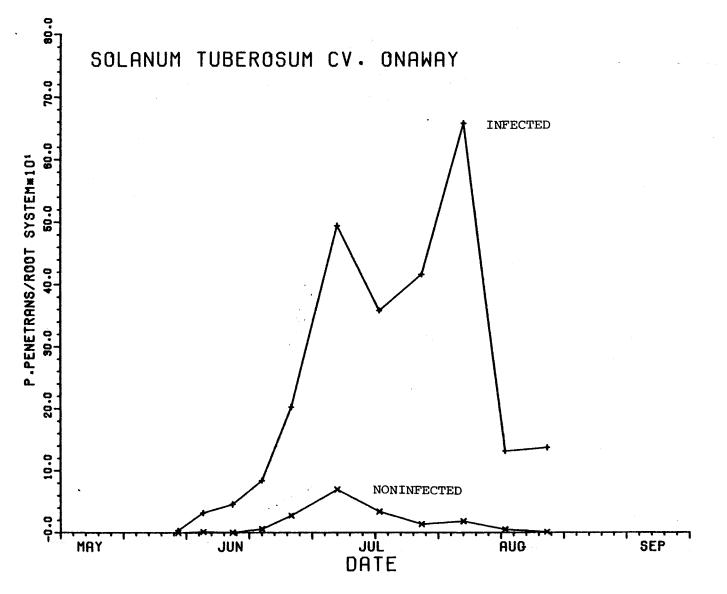

- 50 -

FIGURE 21

- 51

F

- 52 -

FIGURE 23

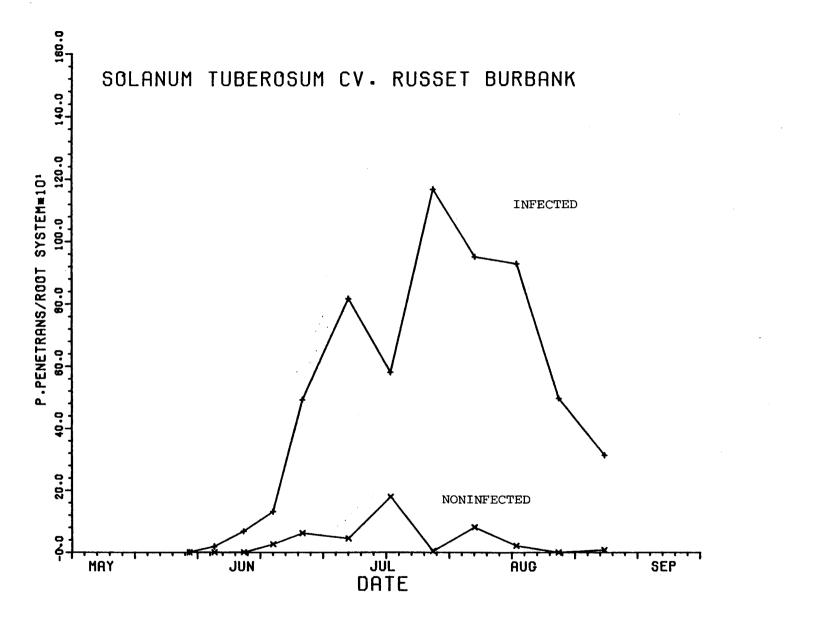
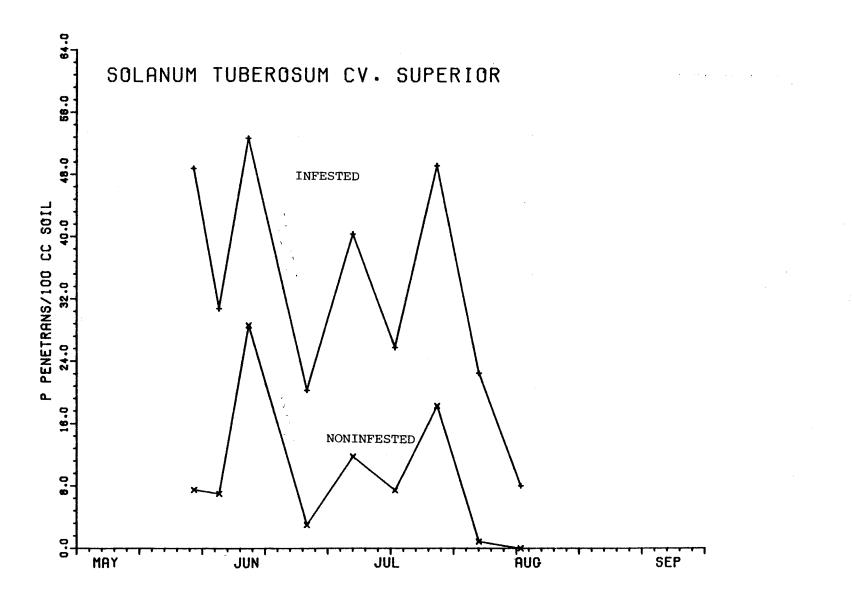



FIGURE 24

- 54 -

FIGURE 25

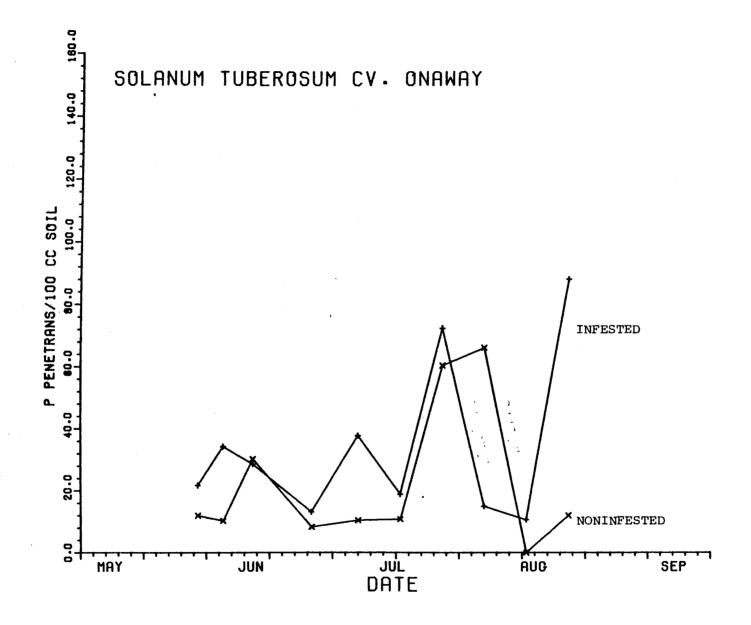
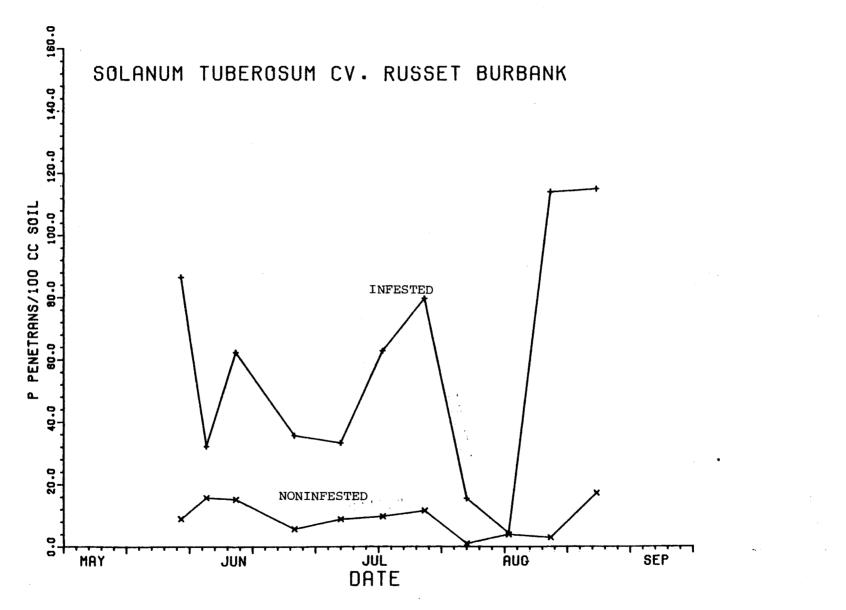



FIGURE 26

- 55 -

- 56 -

FIGURE 27

CORN HYBRIDS, PLANT POPULATION AND IRRIGATION

E. C. Rossman and Bary Darling Department of Crop and Soil Sciences

Performance data for 80 commercial corn hybrids evaluated in 1976 with irrigation and without irrigation are presented in Table 1. Twelve inches of supplemental water were supplied in ten applications on July 12, 17, 22, 26 and August 2, 6, 10, 18, 21, 24. Bouyoucous soil moisture blocks were placed at 6, 12, 18 and 24 - inch depths in both irrigated and unirrigated plot areas.

Irrigated yields averaged 84.6 bushels per acre more than unirrigated -- 156.4 vs 71.8, an increase of 118%. Hybrids ranged from 120.2 to 183.2 irrigated and 48.9 to 92.6 bushels per acre without irrigation. Hybrids significantly better than the average yield (arranged in order of increasing moisture content at harvest) are listed below. Sixteen of the nineteen hybrids were in the highest yielding group for both irrigated and unirrigated plots. The correlation of irrigated with unirrigated yields was highly significant, .490**, indicating that the hybrids tended to respond alike in both situations. The correlation was not as high as in other years when it ranged from .7 - .9.

Irrigated

Cowbell PSX 7300 (2X) Northrup King PX32 (2X) Michigan 4122 (2X) Michigan 407-2X (2X) Pioneer 3780 (2X) Security SS102 (2X) Pioneer 3709 (MSX) Golden Harvest H-2450 (2X) Funk G-4444 (2X)

Super Crost S27 (2X) Asgrow RX58 (2X) Pick XR44 (2X) Blaney B606 (2X) Michigan 5802 (2X) Funk G-4321A (2X) U.S. Steel 0011 Acco UC3301 (2X) Migro M-0301 (2X)

Unirrigated

Cowbell PSX7300 (2X) Northrup King PX32 (2X) Michigan 4122 (2X) Michigan 407-2X (2X) Pioneer 3780 (2X) Security SS102 (2X) Blaney EX7305 (2X) Pioneer 3709 (MSX) Golden Harvest H-2450 (2X)

Funk G-4444 (2X) Pick XR44 (2X) Blaney B606 (2X) Michigan 5802 (2X) Funk G-4321A (2X) Acco UC3301 (2X) Migro M-0301 (2X)

Average, highest and lowest yields for corn hybrids irrigated not irrigated for a 9-year period, 1968 - 1976, are given in Table 2. The average yielding hybrid has given a response of 49 bushels to irrigation. The highest yielding hybrids have responded with 62 bushels added yield while the lowest yielding hybrids have given only 32 bushels added yield when irrigated. These results demonstrated the importance of choosing high yielding hybrids to maximize returns from irrigation with little, if any, additional cost.

Plant Population x Irrigation

Five adapted hybrids at four plant population irrigated and not irrigated were grown in each of nine years, 1968 - 1976, Table 3. Over the nine-year period, a population of 23,200 has given the highest average yield (172 bushels) when irrigated while 19,100 has given the highest yield (113 bushels) without irrigation. The 23,200 population irrigated has given the highest yield in eight of the nine years. The average 9-year increase due to irrigation has been 71 bushels per acre at the 23,300 population.

Moisture content of grain at harvest has averaged .5 - 1.0% higher for the higher plant populations. Stalk lodging has increased slightly with increased plant population.

Year	No. of	AVERAGI		HIGHES	and the second s	LOWEST	
	hybrids tested	Irrigated	Not irrigated			Irrigated	Not irrigated
1976	20	156	70	102	0.2	100	10
	80	156	72	183	93	120	49
1975	75	154	125	207	157	106	80
1974	76	112	103	134	122	65	58
1973	72	114	101	138	120	78	73
1972	72	157	137	206	179	99	91
1971	56	163	28	211	42	91	11
1970	64	144	103	194	128	95	70
19 69	63	146	86	185	109	97	56
1968	56	136	96	182	123	92	65
Average	e	143	94	182	120	93	61

Table 2. Average, highest and lowest yields for corn hybrids irrigated and not irrigated for nine years, 1968 - 1976.

Table 3. Average yield at four plant populations irrigated and not irrigated for nine years, 1968 - 1976.

Year _	15,20	0	19,100		23,200	2	27,50	20
]	 	Not irrigated	Irrigated	Not irrigated	Irrigated	Not irrigated	Irrigated	Not irrigated
1976 1975	153 158	72 136	174 183	84 164	181 196	81 151	161 172	68 146
1974	118	100	130	111	135	98	120	94
1973 1972	108 152	97 132	134 187	116 159	128 191	106 149	108 161	102 144
1971 1970	173 122	37 91	189 144	35 112	191 158	20 93	181 151	11 85
1969	122	91	144	109	173	93 96	148	85 86
1968	144	114	169	130	193	107	178	89
Average	140	97	163	113	172	101	153	92

NORTH CENTRAL MICHIGAN Montcalm County Trial - Irrigated vs. Not Irrigated One, Two, Three Year Averages - 1976, 1975, 1974

	57 M -			Bushels per Acre					% Stalk lodging						
1 / 1		isture													······
Hybrid	1976		3		976 g Not	2 yea:	ars Not	3 yea Irrig			76 g Not	2 years		3 year	
(~ 1 V		yrs.	yrs.	TITTR	Irrig	Irrig	Irrig	-	Irrig	11119	Irrig			Irrig	
(Brand - Variety)				,	TITTR		11115	<u></u>	11115		TITTR	**************************************	Irrig	<u> </u>	Irrig
Northrup King PX20 (2X)	17.4		23	128.0	58.8	132	85	124	90	1.5	4.5	5	4	3	3
Pick 185 (Sp.)	18.0			131.2	48.9					12.3	30.6				
Pride 2206 (2X)	18.2			133.7	64.7					3.6	10.2				
Pick 6266 (Sp.)	18.5			117.8	55.4			Aur		2.3	6.3				
Michigan 280 (4X)	18.6	20	23	133.0	57.8	128	75	124	86	6.7	19.8		15	6	11
															·
Funk G-5191 (4X)	18.8			137.8	69.4					9.2	6.2				~~
Michigan EXP7502 (3X)	18.8		a antis atos atos	140.5	68.0					6.0	14.5				
Sohigro 12 (2X)	18.9			120.2	53.1					8.6	15.7				
Migro M-0101 (2X)	19.1		24	139.2	66.3	140	88	130	91	2.9	11.7	4	8	3	6
Michigan 2853 (3X)	19.2	21	23	138.3	66.2	134	83	130	92	3.6	9.6	5	8	4	6
Pick P23 (Sp.)	19.2			137.4	64.0					5.7	10.5				
DeKalb XL12 (2X)	19.6		26	147.4	62.4	136	83	129	90	4.4	16.1	11	17	7	12
Michigan 333-3X (3X)	19.7		24	144.0	78.9	144	97	137	103	2.2	3.3	2	6	2	4
Nolverine W128 (2X)	19.7		23	129.6	56.0	126	78	119	85	1.4	7.4	3	4	4	4
Super Crost 1610 (2X)	20.4	22	24	124.5	54.6	130	81	123	89	10.4	9.2	7	5	4	4
Pride 3315 (2X)	20.4			138.4	59.6					0.7	1.6				
Michigan 3093 (3X)	20.5	-		150.9	76.4	155	101			3.7	10.5	3	6		
Funk G-4195 (3X)	20.8		26	148.6	63.6	141	86	131	93	6.0	26.0	7	15	4	10
Funk G-4141 (2X)	21.3		تجب يلتنا مهي	152.2	75.2	154	95			4.4	13.0	3	7		
<u>Michigan 396-3X (3X)</u>	21.4	23	27	155.9	68.3	158	98	148	104	6.5	12.3	3	7	2	4
							1		- • •			•	-	-	
Michigan 3102 (2X)	21.5		26	159.6	76.0	158	104	147	108	2.2	9.0	3	6	2	4
Blaney B443 (3X)	21.5			157.7	76.9	156	99			7.3	19.0	6	10		
Funk G-4252 (3X)	21.6	23	27	149.5	73.7	147	93	138	96	8.7	9.1	7	6	5	4
Blaney B302 (2X)	21.7	22	25	154.3	72.3	148	94	139	99	5.2	20.1	3	12	2	9
Asgrow RX2345 (2X)	21.7			149.7	73.0					3.6	7.2				

Zone 3

- 61

Table 1 Continued

1,2	Michigan EXP7501 (3X) Wolverine W155 (2X) Cowbell PSX7300 (2X) Pioneer 3958 (2X) Super Crost 1692 (2X)	21.8 21.8 22.1 22.1 22.1	24 23 22	28 26 25	155.3 153.1 170.8 149.9 147.7	74.6 76.5 84.2 73.4 66.6	158 155 139	103 100 85	139 140 133	99 100 94	3.714.88.218.60.825.43.09.42.99.0	 4 2 3	 16 6 7	 3 1 2	 11 4 5
	Sohigro 22 (2X)	22.1			130.9	62.7		agast alline Miler			5.3 9.7				
	Blaney B401 (2X)	22.4	23		140.6	73.8	149	102			2.2 14.4	4	8		-
		X)22.5			154.0	70.7					4.5 13.6				
	Asgrow RX53 (2X)	22.5	25	27	151.8	72.4	161	105	148	108	3.0 10.6	2	6	1	4
	Super Crost 2350 (2X)	22.5	میں بین خون	هوان هان مانه مواليوران، رون اليوريان	162.0	75.1					1.5 9.7				
	Cowbell MSX102 (2X)	22.5	24		141.5	65.5	135	86			5.7 16.4	5	13	-	
	Acco U334 (3X)	22.6	25		147.3	68.5	157	96			6.0 16.9	9	11		
	Acco UC2301 (2X)	22.7	24	27	161.4	76.9	160	105	146	105	1.5 18.8	4	18	3	12
	Funk G-4343 (2X)	22.7	24	28	153.3	65.9	159	101	140	95	7.0 15.4	7	11	5	8
	Migro M-1020 (2X)	22.8	23	26	161.8		151	92	139	96	3.9 12.3	3		2	6
							,				·····				
	Blaney B303A (2X)	22.8	*** ***		160.7	71.1					10.9 18.0				
	Blaney B605WX (2X)	23.1			149.6	67.4					0.9 14.9				
	Northrup King PX32 (2X)	23.1	25	28	172.1	79.8	170	108	153	107	0.7 13.7	3	10	2	7
-	Michigan 4122 (2X)	23.2	25		180.0	88•9	180	115			3.7 10.2	2	5		
1,2	Michigan 407-2X (2X)	23.2	25	28	176.8	80.6	173	109	160	113	0.7 12.1	2	6	1	5
	Pride 4404 (2X)	23.2	25		169.2	75.6	169	103			2 2 7 7	~	-		
1,2	Pioneer 3780 (2X)	23.2	26	30	179.2	81. 8	109	103	154	108	3.3 7.6 3.8 16.1	2 4	5 10		7
•	Sohigro 44	23.4			155.6	64.6		107		100	2.9 11.5	4	10		
	Super Crost 1901 (2X)	23.6	26	30	154.9	61.6	155	9 0	148	100	3.0 24.0	2	13	2	9
	Wolverine W166 (2X)	23.6	25		166.2	68.2	173	103			3.9 6.1	5	13	<u>د</u>	
	Security SS102 (2X)	23.8			176.0	84.1					6.2 18.7		-		
	Blaney EX7305 (2X)	23.8	25	28	169.3	78.9	163	106	144	105	3.8 11.5	3	8	2	6
	Michigan 572-3X (3X)	23.9	25	30	164.5	68.0	160	· 98	148	104	3.2 3.8	5	5	3	3
	Michigan 410-2X (2X)	24.0	25	29	170.4	78.2	164	106	154	108	6.9 9.8	6	7	4	5
	Cowbell PSX4100 (2X)	24.0	26	30	158.5	75.8	149	94	137	96	6.9 13.5	7	9	5	6

62 -

- 1

Table 1 Continued

1,2	2 Pioneer 3709 (MSX) 2 Golden Harvest H-2450 Pride R290 (2X) 2 Funk G-4444 (2X) 2 Super Crost S27 (2X)	24.2 (2X)24.5 24.7 24.8 24.9	26 27	29 30 30	178.6 170.9 163.7 183.2 179.6	92.6 81.1 68.2 79.8 86.4	161 175 170	101 107 113	152 160 148	106 112 104	3.7 0.0 10.8 0.7 1.5	8.1 21.3 15.5 20.3 19.4	9 2 2	 11 12 13	 6 2 1	 8 8 9
-	Michigan 5443 (3X) U.S. Steel 0050 Asgrow RX58 (2X) Pick XR44 (2X) Blaney B606 (2X)	24.9 25.3 25.4 25.6 25.8		 31	168.4 161.6 171.0 179.5 171.5	78.0 70.5 75.6 89.4 90.3	168 174	105 117	 153	 112	3.0 2.9 3.7 2.2 0.7	13.2 22.0 16.2 13.3 3.3	3 2	9 3	 	2
•	Golden Harvest EXP445 Michigan 5802 (2X) Funk G-4366 (2X) Migro M-1130 (2X) Funk G-4321A (2X)	(2X)25.8 25.8 26.2 26.3 26.9	28 28 28 	31 32	164.2 178.2 167.6 163.2 173.4	73.0 88.2 73.8 65.6 80.3	183 169 167	120 103 102	 148 153 	101 104	1.6 3.5 0.8 2.2 0.7	6.) 14.5 18.1 5.1 18.7	2 1 4	8 12 5	 1 2 	 8 3
	U.S. Steel 0011 Acco UC3301 (2X) Pioneer 3535 (2X) Michigan 575-2X (2X) Migro M-0301 (2X)	27.1 27.6 27.6 27.7 28.7	30 30 28	33 32	174.0 173.4 167.5 169.7 173.5	73.0 79.9 74.5 76.2 87.0	190 184 169	118 116 106	167 156	114 109	8.4 1.5 1.5 3.7 3.7	28.0 18.1 2.3 6.9 6.9	1 2 4	10 2 6	1 	7 4
	Average	22.7	24	28	156.4		158	99	143	101		13.3	4	9	3	6
	Range	17.4 to 28.7	20 to 30	23 to 33	120.2 to 183.2	48.9 to 92.6	126 to 190	75 to 120	119 to 167	85 to 114	0.0 to 12.3	1.5 to 30.5	1 to 11	2 to 18	1 to 7	2 to 12
	Least significant difference	1.1	0.8	0.7	14.4	6.8	8	7	5	5						

¹ ²Significantly better than average yield, irrigated, 1976. ²Significantly better than average yield, not irrigated, 1976.

Table 1 Continued

. .

	1976	1975	1974
Planted	<u>1976</u> May 5	May 7	May 4
Harvested	October 29	October 15	October 26
Soil Type `	Montcalm sandy loam	Montcalm sandy loam	Montcalm sandy loam
Previous Crop	Clover	Clover	Sorzhum - sudan seeded
			to rye in fall
Population	19,300	20,700	20,500
Rows	30"	30 ^m	30"
Fertilizer	336-156-156	255-110-110	150-120-170
Irrigation	12 inches	9 inches	8 inches
Soil Test: pH	6.7	6.5	6.1
P	403 (very high)	268 (very high)	340 (very high)
К	163 (medium)	257 (high)	198 (medium)

Farm Cooperator: Theron Comden, Lakeview

County Extension Director: James Crosby, Stanton

- 64 -

1976 WEED CONTROL STUDIES ON PICKLING CUCUMBERS, PEAS AND SNAP BEANS

A.R. Putnam, Paul F. Boldt and A. Paul Love Department of Horticulture

Summary

<u>Cucumbers</u>. More consistent weed control treatments are still needed for seeded cucumbers. Of the new chemicals tested, HOE-23408 and VEL-5052 continued to look promising. Several combinations involving HOE-23408 gave excellent results. Poor soil moisture after treatment made it impossible to accurately assess crop safety with EL-161. Several methods were evaluated to allow safe use of chloramben (AMIBEN) on cucumbers. The only method which looked promising was the use of activated charcoal sprayed in a 2 inch band over the seeded row. Both paraquat and glyphosate gave good weed knockdown prior to seeding cucumbers in a stale stale seedbed.

<u>Peas</u>. Since we had not conducted herbicide trials on peas for several seasons, and since the acreage has increased considerably in the Montcalm area, tests were established to evaluate pea and weed response to a large number of products. In an early trial with low weed densities, good weed control was obtained with most of the chemicals tested. All of the PPI dinitroanilines except profluralin (TOLBAN) caused some visible injury or stand reduction on peas. Several preemergence combinations including propachlor (RAMROD) + dinoseb (PREMERGE), HOE-23408 + dinoseb, and penoxalin (PROWL) + dinoseb gave good weed control without injury. Postemergence applications of MCPA (DOW MCP AMINE) + HOE-23408, or dinoseb + HOE-23408 also gave excellent results. In a late planting, under dry conditions, the PPI dinitroaniline chemicals were effective and safe. The preemergence and postemergence combinations mentioned above also provided good results in this test.

<u>Snap Beans</u>. Many of the same chemicals evaluated on peas have been evaluated on snap beans for several seasons. In a PPI test, CGA-24705 was safe at rates up to 2.5 lb/A. Of several dinitroanilines tested, tolerance to dinitroamine (COBEX) and penoxalin (PROWL) was marginal. Surface preemergence applications of CGA-24705 and ethofumesate (NORTRON) gave satisfactory weed control without injuring beans. The use of dinoseb (PREMERGE 3) as an overlay or in combination with other herbicides often improved the results on broadleaf weeds. Both paraquat (PARAQUAT CL) and glyphosate (ROUNDUP) performed satisfactorily to kill emerged weeds in a stale seedbed.

1

Key to abbreviations used in data tables:

BYGR = Barnyardgrass CIR = Crop injury rating COLQ = Common lambsquarters CUCU = Cucumber GRD = Grade LACG = Large crabgrass PO = Postemergence PPI = Preplant incorporated PRE = Preemergence RRPW = Redroot pigweed SNBE = Snap bean TEND = Tenderometer

Rating system:

0 = No weed control or crop injury

7.5 = Acceptable weed control

10.0 = Complete weed control or complete crop kill

- 66 -

Cucumber Evaluation, Stale Seedbed

Location:	Montcalm Experimental Far	m, Ena	trican	
Soil type:	McBride Sandy Loam	-		
Date of planting:	June 18, 1976 Variety:	Caro	lina	
Plot size:	4' x 20' Replication:	3	GPA:	36

HERBICIDE APPLICATION INFORMATION:

HOW APPLIED	DATE	AIR T.	SOIL T	SOIL MOIST	WIND	SKY
PRE	JUNE 18	78°	83°	MOIST	5-8 MPH	SUNNY

NOTE: Weed growth June 18, RRPW 4 leaf, BYGR 3-5 leaf, COLQ 4-6 leaf. Weeds per sq ft June 29, RRPW 4.2, BYGR 2.2, COLQ 3.4

CUCU75331

TRT NO	CHEMICAL	FORM	RATE	HOW	GRD-1 LBS/PL 881276	GRD-2 LBS/PL 081276	GRD-3 LBS/PL 081276	OVRSZ LBS/PL 081276	VIELD 1/A 081276	BY GR RATIN; 062976	RRPW Ratin; 062975	COLQ RATING 062976
1	CONTROL				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	WEEDED CONTROL				2.0	3.1	6.2	6.9	4.9	18.0	10.0	10.0
3	PARAQUAT + X-77	2EC	•50	PRE	1.8	3.4	8.2	9.5	6.2	5.7	5.0	5.0
4	PARAQUAT + X-77	2EC	1.00	PRE	1.7	2.7	7.0	10.7	6.0	6. 0	5.7	5.3
5	MON 2133	3 W S	•75	PRE	1.9	4.0	8.2	10.8	6.7	4.7	4.3	4.0
5	NON 2139	3#S	1.58	PRE	1.9	3.4	7.0	7.7	5.4	6.7	6.3	5.7
LSD	AT FIVE PERCENT	LEVEL			.5	•	3.0	2.6		2.1		•5
COE F	FICIENT OF VARIA	TEON (P	ERCENT)		17.	13.	27.	19.	16.	21.	10.	6. 1

1

Preemergence Herbicide Evaluation in Pickling Cucumbers

Location:	Montcalm Experimental Farm, Entrican
Soil type:	McBride Sandy Loam
Date of planting:	June 4, 1976 Variety: Carolina
Plot size:	4' x 20' Replications: 3 GPA: 36

HERBICIDE APPLICATION INFORMATION:

HOW

1. A. A.

APP	DATE	AIR T	SOIL T	SOIL MOIST	RH	WIND	SKY
PRE	JUNE 4	82°	87°	ADEQUATE	44%	3 -5 MP H	SUNNY

NOTE: No rainfall occurred within 8 days after application. Plots were irrigated on June 12. Weeds per 1 ft. June 18, 1976, BYGR 2.0, RRPW 5.9, COLQ 2.1.

CUCU76332

NOT	CHEMICAL	FORM	RATE	HOW	BYGR RATING 061876	RRPW RATING 061876	COLO RATING 061876	CUCU CIR 061576	STAND COUNT 962476
1	CONTROL				0.0	0.0	0.0	0.0	52.3
2	WEEDED CONTROL				3.0	G + O	0.0	ũ. 0	60.0
3	EL-161	3 EC	C.75	PRE	1.0	•7	.7	0.0	51.3
4	EL-161	3EC	1.00	PRE	.7	2.3	2.7	.7	50.0
5	EL-161	3EC	1.25	PRE	1.3	1.7	2.0	1.0	56.0
6	HDE-23438	3F C	1.00	PRE	1.0	1.7	1.7	.7	48.3
7	H0E-2343 B	3EC	C 0. S	PRE	7.0	4.3	4.7	1.3	52.3
ß	VEL 5052	2EC	1.30	PRE	6.3	3.0	3.0	• 3	54.0
9	VEL 5032	2EC	2.00	PRE	7.3	6.4	6.0	2.0	48.3
10	VEL 5052	2EC	3.00	PRE	7.0	4.3	4.3	1.0	55.3
11	DINOSEB	3EC	1.30	PRE	2.7	2.3	2.7	1.3	39.0
12	DINOSEB	3EC	2.03	PRE	.7	5.0	5.3	1.7	41.0
13	NAPTALAH	2 W S	4.30	PRE	7.0	7.7	7.3	1.7	44.0
14	BENSULIDE	4EC	4.00	PRE	.7	1.0	1.7	. 3	50.7
15	CHLORAMBEN ME	280	1.50	PRE	1.7	5.]	5.0	1.3	56.7
16	NAPTALAN HDE-2343 8	2WS 3EC	4.00	PRE	7.0	8 • G	7.3	1.7	52.3
17	NAPTALAM BENSULIJE	2 WS 4EC	4.00 4.1)()	PRE PRE	7 • ú	7.7	6.3	1.7	44.3
18	CHLORAM3EN ME Hje-23498	3EC 3EC	1.50 1.00	PRE PRE	5.7	5.3	5.7	1.3	61.7
19	CHLORAMBEN ME BENSULIDE	3EC 4EC	1.5C 4.00	PRE	1.3	4.7	5.0	1.7	55.0
20	NAPTALAM DINOSEB	2 WS 3EC	4.30 1.00	PRE	5.3	7.0	6.7	1.7	58.0
LSD	AT FIVE PERCENT		******				2.3	1.0	18.3
	FISIENT OF VARIA		RCENT		29.	33.	35.	59.	21.

- 68 -

Evaluation of Chloramben and Combinations on Pickling Cucumbers

Location:	Montcalm Experimental Farm, Entrican
Soil type:	McBride Sandy Loam
Date of planting:	June 4, 1976 Variety: Carolina
Plot size:	4' x 20' Replications: 3 GPA: 36

HERBICIDE APPLICATION INFORMATION:

HOW APP	DATE	AIR T	SOIL T	SOIL MOIST	<u>RH</u>	WIND	SKY
PRE	JUNE 4	82°	87°	ADEQUATE	44 %	35 MPH	SUNNY
PO	JUNE 14	85°	88°	SURFACE DRY	65 %	3-5 MPH	CLOUDY

NOTE: No rainfall occurred within 8 days of application. Plots were irrigated on June 12. Weeds per sq. ft. on June 18, RRPW 8.1, COLQ 3.3, BYGR 1.3. Stand count is plants per 20' of row. Cucumbers at time of PO spraying had the first true leaf just enlarging.

CUCU75333

TR T NO	CHEMICAL	FORM	RATE	V 2A	BYGR RATING 061976	RRPW RATING 061876	RATING 651876	CUCU CIR 061876	CUCU CIR 362976	STAND COUNT 062975
 1	CONTROL	******			û.)		0.u	j.j	J.0	66.J
z	WEEDED CONTROL				0.0	0.0	C.G	J. 8	Ú.L	53.3
3	CHLORAMBEN	2 E C	C.75	PRE	3	2.7	2.3	1.3	1.3	53.0
4	CHLO RAMS EN	2E.C	1.50	PPE	1.0	5.3	3.3	2.7	5.0	54.3
5	CHLORAMBEN	13 G	. .75	PRE	1.7	3.3	3.7	2.7	3.Ű	49.7
6	CHLORAMBEN	13 G	1.50	PRE	3.7	6.3	4 e Ü	3.6	5.0	52•J
7	CHLOPAMBEN DINOSE9	2EC 3EC	0.75 0.75	PRE PRE	2.3	4. Ú	3.7	1.0	5.0	75.3
8	CHLORAM3EN BJTRALIN	2 <i>E</i> C 4EC	0.75 1.50	PRE	4.7	6.7	6.3	2.0	2.7	68.3
9	CHUOPAMB IN Hoe+2343 A	2EC 3EC	C.75. 1.00	PRE	6.0	4.7	5.0	1+3	•7	72.3
13	CHLORAMJEN Act. Charcoal	250	1.50	PRE	2.7	6.3	5.7	2.7	2.7	58.3
11	CHLORAMBEN Act. CHARCOAL	2EC	1.50 400	PRE	2.3	5.3	3.7	1.7	2.6	64.7
12	CHLORAMSEN Act. Charcoal	2 E C	3 .0 i	PRE	4.0	6.0	5.3	3 • Ŭ	4.7	63.3
13	CHLORAMSEN Act. Charcoal	250	3.00 430	PRE	4.0	6.•3	57	2.7	4.3	67.3
14	CHLORAMBEN ME	ZEC	3.30	PRE	2.0	6.7	6.0	1.7	3.0	64.7
15	CHLORA43 EN	2£ C	(.75	PD	.7	0 • ü	0.3	2.3	4.7	49.3
16	CHLORAMBEN	260	1.50	PO	.7	• 3	• 3	2.3	5.7	52.0
17	CHLORAMBEN	1î G	75	PO	1.7	•7	0.0	1.7	5.3	39.0
18	CHLORAM3 EN	19 G	:.53	60	1.7	1.0	•7	2.7	6.7	57.3
	AT FIVE PERCENT				2.5	2.1	2.5	1.4	1.8	15.2
	FICIENT OF VARIA		FRCENT		63.	34.	48.	ia ia .	33.	17.

Early Herbicide Evaluations in Peas

		McBri April	de Sandy J. 20, 1976	Variety: Gree		531
HERBIC	IDE APPLIC	ATION IN	FORMATION:			
HOW						
APP	DATE	AIR T	SOIL T	SOIL MOIST	WIND	SKY
PPI	APRIL 20		67°	SURFACE DRY	4-8 MPH	
	APRIL 20 MAY 26			LIGHT MIST DRY	2-4 MPH 0	CLOUDY SUNNY
NOTE:	up to 2 t Pea seed	rue leav was trea	es, COLQ u ted with C	d were up to 5 d p to 4 leaves, B aptan 75 and met , BYGR 5.8, RRPW	YGR 1-3 1 hoxychlor	eaves.

PEA 576051

TRT NO	CHEHICAL	FORM	RATE	HO4 APP	BYGR RATING 052676	RRPH Rating 052676	COLQ RATING 052676	PEAS CIR 0 52676	ST AND Count 0\$2676	YIELD (LB/A)	CONVERTED TO 103 TEND
1	CONTROL				0.0	0.0	0.0	G • Ø	12.7	6816	5930
2	WEEDED CONTROL				0.0	00	0.0	0.0	15.8	5148	4525
3	BUTRALIN	4EC	1.50	PPI	8.3	8.7	8.0	•7	13.2	6212	5404
4	BUTRALIN	4EC	3.00	PPI	9.7	9.7	9.3	3.0	8.7		
3	DINITRAMINE	2EC	0.33	PPI	8.0	8.3	9.3	2.0	9.8	4846	4458
6	DINITRAMINE	ZEC	0.50	PPI	9.3	9.3	9.7	3.0	9.7		
7	CGA - 2478 5	6EC	1.50	PPI	8.7	8.7	9.7	4.0	12.2		
8	CGA-2470 5	6EC	3.00	PPI	9.3	9.0	8.7	6.0	5.8		
9	EL-161	JEC	0.75	PPI	9.7	9.3	9.7	1.7	10.5	5236	4927
10	EL-161	3EC	1.50	PPI	9.7	9.7	10.0	4.0	7.0	4881	4793
11	DINOSEB	3EC	6.00	PPI	7.0	8.0	9.0	1.3	14.3	4721	4107

1

- 70 -

TFT NO	GHEMICAL	FORM	RATE	НЭМ Дэр	BY GR RATING	RRPW RATING	COLQ RATING	PEAS CTR	STAND	YTELD (1.B/A)	TEND
12	PROFLURALIN	4EC	0.50	PPI	9.3	9.3	9.7	1.0	11.6	5715	5298
13	PROFLURALIN	4EC	0.75	PPI	9.3	9.3	8.0	1.0	12.5		
14	TRIFLURALIN	4 EC	0.50	PPI	8.7	9.0	9.3	2.0	12.2	6195	5532
15	TRIFLURALIN	4EC	0.75	PPI	9.3	10.0	10.0	2.3	10.7		
16	TRIFLURALIN DINOSE8	4EC 3EC	0.50 6.00	PPI PPI	9.3	9.3	9.3	2.3	11.5	4349	3979
17	TRIFLURALIN EL-161	4EC 3EC	0.25 0.38	PPI PPI	9.7	10.0	9.3	2.0	11.3	5431	4790
18	CGA-2470 5	6EC	1.50	PRE	9.7	9.0	9.0	4.0	9.5		
19	CGA-2478 5	6EC	3.00	PRE	10.0	9.7	9.7	7.7	9.0		
20	HOE-2348 8	3EC	1.00	PRE	10.0	7.3	7.3	8.0	16.9	6354	5750
21	HOE-2340 8	3EC	1.50	PRE	9.7	5.7	6.3	.3	14.5		
22	ALACHLOR	4EC	1.50	PRE	10.0	9.7	10.0	6.0	13.5		
23	ALACHLOR	4EC	3.00	PRE	10.0	10.0	18.0	8.0	7.2		
24	ETHOFUMESATE	1.5EC	1.50	PRE	9.7	9.3	8.7	4.0	14.7	7206	6493
25	ETHOFUNESATE	1.5EC	3.00	PRE	10.0	10.0	9.3	6.3	13.7	4934	5289
26	DINOSEB	3EC	6.00	PRE	8.0	8.3	8.7	1.0	11.3	6674	6140
27	DINOSEB	3EC	9.00	PRE	8.0	9.8	9.7	1.0	12.8		
28	PENOXALIN	4EC	0.50	PRE	7.3	8.0	8.3	0.0	13.5	6709	5877
29	PENOXALIN	4EC	1.00	PRE	8.7	7.7	9.3	0.0	14.0	7686	6833
30	PROPACHL OR	65WP	2.00	PRE	4.7	3.7	3.3	a. a	14.8	6869	5997
31	PROPACHLOR	65 NP	4.00	PRE	9.0	8.8	7.3	2.0	13.5	5467	5319
32	R-33222	50 HP	2.00	PRE	9.7	10.0	10.0	1.3	15.5		
33	R=3 3222	50WP	4.00	PRE	10.0	10.0	10.0	4.0	13.3		
34	CGA-24705 DINOSEB	6EC 3EC	1.50 6.00	PRE PRE	10.0	9.3	10.0	3.7	13.5		
35	PROPACHLOR DINOSEB	65 WP 3EC	2.00 6.00	PRE PRE	9.0	8.7	10.0	1.3	14.7	6337	6223
36	HOE-23408 DINOSEB	3EC 3EC	1.00 6.00	PRE PRE	10.0	7.3	9.7	.3	13.8	6958	6292
37	PENOXALIN DINCSEB	4EC 3EC	0.50 6.00	PRE PRE	8.7	8.7	9.3	• 3	14.3	5538	6070
38	VEL 5052	2 EC	1.50	PRE	9.7	9.0	8.7	1.7	16.0		
39	VEL 5052	2EC	3.00	PRE	10.0	9.0	9.3	3.3	13.3		
					. *						

TRT NO	CHEMICAL	FƏRH	RATE	MCH 4-5	8YGR Rating 060276	RRPW Rating 060276		PEAS CIR 160276	STAND COUNT 05257	YIELD (LB7A)	TEND
40	H0E-23408	3EC	0.75	> 0	5.3	5.7	8.3	9.0	15.8	6248	5836
41	HOE-23408	3EC	1.50	P0	7.0	8.0	9.3	0.0	14.7		
42	MCPA	4EC	0.13	PO	6.3	6.3	6.0	9.0	13.5	5520	5078
43	NCPA	4EC	0.25	PO	7.3	8.0	6.0	C • E	13.2	5378	6034
44	MCPB	4EC	0.50	P0	5.7	5.7	4 • G	6.0	11.3		
45	MCPB	4EC	1.00	PO	8.3	8.5	4.7	c.c	15.8		
46	DINOSEB	3EC	[.75	20	7.0	9.3	6.7	0.8	15.3	5502	5403
47	DINOSEB	3EC	1.50	٥¢	2.0	4.3	4 • G	0.0	13.9		
48	NCPA HDE-234ú8	4 EC 3 EC	0.13 6.75	P0 P0	10.0	10.5	13.0	1.3	14.2	5680	5527
49	DINOSEB H0E-23408	3EC 3EC	0.75 C.75	20	8.7	10.3	9.7	1.3	12.3	5591	5015
5¢	BENTAZON	4EC	1.00	P 0	9.3	9.3	5.0	6.0	13.2		
LSO	AT FIVE PERCEN	NT LEVEL			1.6	1.6	1.8	1.1	3.6		
COE F	FICIENT OF VAR	RIATION (P	ERCENT)		12.	12.	14.	36.	18.		

= .72 -

.

Late Herbicide Evaluation in Peas

Location:	Montcalm Experimental Farm, Entrican
Soil Type:	McBride Sandy Loam
Date of Planting:	June 2, 1976 Variety: Green Giant #531
Plot size:	6' x 20' Replications: 2 GPA: 36

HERBICIDE APPLICATION INFORMATION:

HOW APP	DATE	AIR T	SOIL T	<u>RH</u>	SOIL MOIST	WIND	<u>SKY</u>
PPI PRE	JUNE 2 JUNE 4	55° 82°	67° 87°	68% 44%	MOIST MODERATE	3-5 мрн 3-5 мрн	SUNNY SUNNY
PO	JUNE 15	78°	83°	-	DRY	5-8 MPH	SUNNY

NOTE: Weed counts per sq. ft. June 15: RRPW 8.9, BYGR 8.1, COLQ 1.7, LACG .1 and plant size RRPW 2-4 inches, BYGR 3-4 leaves, COLQ 4-6 leaves, LACG 2-3 leaves, peas up to 4 inches.

PE4 \$76052

TRT NO	CHEMICAL	FORM	RA TE	HDW	BYGR RATING 061576	RRPW Rating 061576	PEAS CIR C61576	STAND Count 062976	VIELD (LB7A)	CONVERTED TO 103 TEND
1	CONTROL				0.0	0.3	6.0	12.4	2221	2594
2	WEEDED CONTROL				0.0	0.0	0.0	14.4	3511	3939
3	BUTRALIN	4EC	1.59	PPI	5.5	6.5	0.0	15.5	4362	5095
4	BUTRALIN	4EC	2.50	PPI	9.0	8.0	• 5	14.9	3139	3817
5	DINITRANINE	250	0.33	PPI	7.5	8.5	0.0	15.0	2966	3678
6	DINITRAMINE	2EC	0.50	PPI	8.5	9.0	•5	14.2	3578	4351
7	EL-161	75.0	3.5€	PPI	9.5	9.3	C.1	14.7	3950	4985
3	EL-161	3 E C	1.32	26 I	3.5	9.5	1.1	14.4	4163	4617
9	PROFLURALIN	4EC	6.50	bal	7.5	8.5	0.0	15.2	3458	4440
13	PROFLURALIN	4 EC	0.75	bal	8.0	9.0	0.0	14.3	4389	5442
11	TRIFLURALIN	4EC	3.50	PPI	5.5	8.0	2.0	16.1	3538	4387
12	TRIFLURALIN	4EC	0.75	PPI	9.0	9.0	•5	13.1	3684	4892
13	H0E-23438	3EC	1.00	PRE	3.5	2.5	0.0	15.7	3285	4073
. 14	DINOSE8	3EC	6.00	PRÉ	3.5	8.5	0.0	17.0	3285	3837
15	PENOXALIN	4EC	0.50	PRE	2.0	2.5	0•Ú	14.8	2474	2776
16	PENOKALIN	4 EC	1.33	PRE	4.0	3.5	0.C	14.2	3365	4092
17	VEL 5052	2E C	1.00	PRE	3.5	2.5	0.0	16.3	3312	3792
18	VEL 5052	2EC	2.00	PRI	6.0	4.0	• 5	17.6	2926	3207
19	DINOSEB HJE-23408	3EC 3EC	6.00 1.00	PRE	6.0	7.0	•5	15.7	4017	4788
20	PROPACHLOR DINOSEB	65 WP JEC	3.00	PRE	8.0	9.0	1.0	15.0	4336	5273
21	PENOXALIN DINOSE3	4 E C 3 E C	0.59 6.03	PRE PRE	7.0	8.5	0 • G	15.0	3365	4092
22	PROPACHLOR	65 WP	3.00	PRE	8.5	5.0	0.0	13.8	3179	3942

Late Herbicide Evaluation in Peas (Continued)

PEAS76052

TRT	CHEMICAL	FORM	RA TE	HCH APP	BYGR RATING 062976	RRPW RATING J62976	COLQ RATING 062976	PEAS CIR 062976	STAND COUNT 162976	YIELD (LB/A)	CONVERTED TO 103 TEND
23	MCPA	4EC	0.38	PO	G . Q	1.5	1.5	1.0	15.3	2620	3060
24	HOE-23438	3 EC	1.00	PO	9.5	5.3	0 • C	0.C	16.0	2860	3275
25	NCPA HJE-23408	4EC 3EC	0.25	P0 P0	10.0	4.5	6.0	3.5	16.0	2820	3745
26	MCPA HDE-23438	SEC	0.38 1.00	P0 P)	10.0	5.5	7.0	5.0.	15.4	2075	28 93
27	MCPA DINOSEB	4EC 3EC	0.25 1.90	Р) Р)	0.0	4.5	6.0	1+0	14.1	2567	3296
28	DINOSE3	3EC	1.00	PD	9.0	1.3	2.5	1.3	14.0	2886	3579
LSD	AT FIVE PERCEN	IT LEVEL	****		2.4	1.8	2.2	•9	2.3		
COEF	FICIENT OF VAR	IATION (P	ERCENT)		20.	16.	22.	66.	7.		
					*******				******	n	

Snapbean Evaluation, Stale Seedbed

Location:Montcalm Experimental Farm, EntricanSoil type:McBride Sandy LoamDate of planting:June 18, 1976Variety: Spartan ArrowPlot size:4' x 20' Replications: 3GPA: 36

HERBICIDE APPLICATION INFORMATION:

HOW AP	PLIED DATE	AIR T.	<u>SOIL T</u> .	SOIL MOIST	WIND	SKY
PRE	JUNE 18	78°	83°	MOIST	5-8 MPH	SUNNY
NOTE:	•			leaf, COLQ 4- 18, BYGR 1.8		BYGR 3-4 leaf. .4.

SNBE76051

TRT NO	CHEHEJAL	FORM	RATE	HBA	BYGR Rating 062976	RRPH RATING 062976	COLO RATING 062976	Y IELD CNT7A 081276
1	CONTROL				0.0	0.0	0.0	0.0
2	WEEDED CONTROL				10.0	10.0	10.0	29.1
3	PARAQUAT + X+77	2EC	0.5	PRE	7.0	5.7	5.3	38.6
4	PARAQUAT + X-77	2EC	1. 0	PRE	6.7	6. 3	6.0	28.4
5	NON 2139	4EC	•75	PRE	6.3	4+0	4.7	34.0
6	NON 2139	4EC	1.5	PRE	8.0	5.7	6.0	31.2
LSD AT FIVE PERCENT LEVEL					. 8	• 9	1.5	11.8
COEFFICIENT OF VARIATION (PERCENT) 7. 9. 16. 24.						24.		

Evaluation of Preemergence and Postemergence Herbicides on Snap Beans

Location:Montcalm Experimental Farm, EntricanSoil type:McBride Sandy LoamDate of planting:June 4, 1976Plot size:4' x 20' Replications: 3 GPA: 36

HERBICIDE APPLICATION INFORMATION:

APP	DATE	AIR T	SOIL T	SOIL MOIST	RH	WIND	SKY
PRE PO	JUNE 8 JUNE 18		93° 83°	DRY SURFACE DRY SURFACE			SUNNY PT. CLOUDY

i

NOTE: No rainfall occurred within 8 days after application. Plots were irrigated June 12. Weeds per sq. ft. June 18, BYGR 5.5, RRPW 9.0, COLQ 1.5. At time of Preemergence application, a few RRPW and BYGR were emerging and snap beans were sprouting. Where post sprays were applied: snap beans: first true leaf with first trifoliate starting to enlarge, BYGR 3-4 leaves, RRPW 2-4 leaves, COLQ 4-6 leaves.

SNBE76063

นกม

TRT NO	CHEMICAL	FORM	RA TE	HDW APP	BYGR Rating 062976	RRPW RATING 962976	COLQ RATING 062976	SNBE CIR 062976	STAND COUNT 062976	
1	CONTROL				0.0	0.0	0.0	0.0	51.3	
2	WEEDED CONTROL	L .			0.0	0.0	0.0	<i>L</i> .0	50.3	
3	CGA-2473 5	6EC	1.50	PRE	6.7	4.7	6.0	• 3	47.3	
4	CGA-2473 5	6EC	2.50	PRE	7.3	5.3	6.0	1.7	44.3	
5	CGA - 2470 5	6EC	2.50	PRE	7.3	5.3	6.0	1.0	54.3	
6	CGA-24715 DINOSEB	6 EC 3EC	1.50 3.60	PRE PRE	8.7	8.3	9.0	2.0	43.7	
7	ETHOFUMESATE	1.5EC	2.00	PRE	4.3	6.7	6.7	1.3	48.0	
8	ETHOFUMESATE	1.5EC	3.00	PRE	6.0	8.3	8.7	2.3	45.0	
3	ETHOFUMESATE	1.5EC	4.00	PRE	6.7	8.7	8.7	2.7	51.7	
10	R-33222	5 J WP	1.60	PRE	4.0	5.3	6.7	1.7	43.0	
11	R-33222	5 û WP	2.00	PRE	5.7	8.3	8.0	5.0	28.3	
12	R-33222	5 JWP	4.00	PRE	8.0	9.0	9.0	7.0	2.3	
13	R-37114	SOWP	4.00	PRE	3.3	5.7	8.0	5.0	30.0	
14	R-37104	50 WP	6.00	PRE	6.7	7.7	9.0	6.7	15.7	
15	PENOXALIN	4EC	0.75	PRE	2.7	5.0	6.3	1.7	41.7	
15	PENOXALIN	4 EC	1.50	PRE	6.0	5.3	7.0	1.3	41.3	
17	DINOSEB	3 EC	3.00	PRE	5.0	7.3	8.3	2.3	46.3	
18	ETHOFUME SATE	1.5EC	1.00	PO	0.0	1.3	0.0	0.0	42.3	
19	ETHOFUMESATE	1.5EC	2.00	PD	. 3	3.0	0.0	J.D	50.3	
20	BENTAZON	4EC	0.75	PO	0.0	1.7	0.0	6.0	43.0	
21	BENTAZON	4EC	1.50	PO	0.9	2.7	0.0	ú•0	43.3	
LSC AT FIVE PERCENT LEVEL 1.7 1.2 1.4 1.3 12.0						12.0				
COEF	FICIENT OF VARIA	TION (PE	RCENT)		24.	14.	15.	43.	18.	

**

INFLUENCE OF NEMATICIDES AND SUBSOILING BENEATH THE PLANTING ROW ON THE DEVELOPMENT AND VIELD OF NAVY AND KIDNEY BEAN PLANTS

G.W. Bird Department of Entomology

In 1975, yields and quality of dry beans grown in a sandy loam soil heavily infested with both the root-lesion (Pratylenchus penetrans) and stunt (Tylenchorhynchus nudus) nematodes were increased from 16.1 to 21.3 CTW PER ACRE through application of the nematicide carbofuran (Furadan 10G). There was a need to repeat this work and determine the reason for the increase in yield and assess its significance in relation to the overall aspects of Michigan dry bean production. A proposal was developed, submitted to the Michigan Dry Bean Commission, funded and carried out in Gratiot and Montcalm Counties during the 1976 growing season. Yields of dry beans in a Gratiot Co. field having a moderate population of the root-lesion nematode were increased from 15.3 to 21.0 CTW PER ACRE (TABLE 1) when carbofuran was applied during a subsoiling operation beneath the planting row. It was determined that approximately 50% of this increase was due to alleviation of direct soil compaction problems or indirectly as soil compaction influenced the tolerance limit of the plant to the root-lesion nematode. The remainder of the yield increase was attributed to control of the root-lesion nematode. At the Montcalm Potato Research Farm, yields of kidney beans and navy beans were increased with carbofuran from 6.4 to 11.3 CTW PER ACRE and from 11.3 to 15.7 CTW PER ACRE, respectively (TABLES 2 and 3). Yields of kidney beans at this site were increased from 6.4 to 12.2 CTW PER ACRE with aldicarb (TABLE 3). Subsoiling beneath the planting was not used in the Montcalm tests. As predicted in the 1975 report to the Michigan Dry Bean Production Advisory Board and Michigan Bean Commission, moving the nematology-bean research program from clay loam and silt loam soils to sandy loam and sandy soils has greatly increased the success of the project. The average yield increase in these tests was 32% (11.1 to 16.3 CTW PER ACRE). One of the projects described above was shown to a number of grower groups and the response was extremely favorable. It is my understanding that there are a number of commercial bean growers interested in the type of soil preparation described above. Unfortunately, however, very little is known about the use of this system in Michigan. For some soils, it is believed to be satisfactory. A research proposal for 1977 will be submitted to the Michigan Dry Bean Production Research Advisory Board and Michigan Bean Commission for continuation of this project.

		Pratylenchus penetrans
-	Yield	per 100 cm^3 soil
Treatment	(cwt/A)	(8/24/76)
Commercial tillage	15.3a	
Subsoiling and bedding	18.7a	7.0a
Subsoiling and bedding plus		
carbofuran	21.1c	11.0a

TABLE 1. Influence of subsoiling beneath of planting row and carbofuran on 1976 yields of Gratiot Co. navy beans.

Column means followed by the same letter are not significantly different (P=0.05) according to the Student-Newman-Kuels Multiple Range Test.

TABLE 2

Influence of nematicides on control of <u>Pratylenchus penetrans</u> and yields of kidney beans

Yield (ctw/A)	P. penetrans per 100 cm ³ soil	
6.4a ¹	0.4a	
10.9b	0.4a	
12.3b	0.6a	
7.7a	0.8a	
11.4b	0.4a	
	(ctw/A) 6.4a ¹ 10.9b 12.3b 7.7a	(ctw/A) per 100 cm ³ soil 6.4a 0.4a 10.9b 0.4a 12.3b 0.6a 7.7a 0.8a

Column means followed by the same letter are not significantly different (P=0.05) according to the Student-Newman-Kuels Multiple Range Test.

TABLE 3

Influence of nematicides on control of <u>Pratylenchus penetrans</u> and yields of dry beans

Treatment	Yield	<u>a P. penetrans</u>				
	(ctw/A)	per 100cm ³ soil (6/29/76)	per gram root (9/13/76)			
Check (nontreated)	11.6a ¹	89.6a	2.2a			
Furadan 10G (20 lb/A)	15.7a	64.8a	1.0a			
Temik 15G (13 lb/A)	13.4a	55.2a	1.2a			
Mocap 10G (10 1b/A)	11.3a	61.6a	3.4a			
CGA 12223 20G (15 1b/A)	11.7a	41.6a	3.6a			
		•				

¹ Column means followed by the same letter are not significantly different (P=0.05) according to the Student-Newman-Kuels Multiple Range Test.

- 78 -