Improving the predictability of hydrologic indices in ecohydrological applications
Monitoring freshwater ecosystems allow us to better understand their overall ecohydrological condition within large and diverse watersheds. Due to the significant costs associated with biological monitoring, hydrological modeling is widely used to calculate ecologically relevant hydrologic indices (ERHIs) for stream health characterization in locations with lacking data. However, the reliability and applicability of these models within ecohydrological frameworks are major concerns. Particularly, hydrologic modeling's ability to predict ERHIs is limited, especially when calibrating models by optimizing a single objective function or selecting a single optimal solution. The goal of this research was to develop model calibration strategies based on multi-objective optimization and Bayesian parameter estimation to improve the predictability of ERHIs and the overall representation of the streamflow regime. The research objectives were to (1) evaluate the predictions of ERHIs using different calibration techniques based on widely used performance metrics, (2) develop performance and signature-based calibration strategies explicitly constraining or targeting ERHIs, and (3) quantify the modeling uncertainty of ERHIs using the results from multi-objective model calibration and Bayesian inference. The developed strategies were tested in an agriculture-dominated watershed in Michigan, US, using the Unified Non-dominated Sorting Algorithm III (U-NSGA-III) for multi-objective calibration and the Soil and Water Assessment Tool (SWAT) for hydrological modeling. Performance-based calibration used objective functions based on metrics calculated on streamflow time series, whereas signature-based calibration used ERHIs values for objective functions' formulation. For uncertainty quantification purposes, a lumped error model accounting for heteroscedasticity and autocorrelation was considered and the multiple-try Differential Evolution Adaptive Metropolis (ZS) (MT-DREAM(ZS)) algorithm was implemented for Markov Chain Monte Carlo (MCMC) sampling. In relation to the first objective, the results showed that using different sets of solutions instead of a single optimal introduces more flexibility in the predictability of various ERHIs. Regarding the second objective, both performance-based and signature-based model calibration strategies were successful in representing most of the selected ERHIs within a +/-30% relative error acceptability threshold while yielding consistent runoff predictions. The performance-based strategy was preferred since it showed a lower dispersion of near-optimal Pareto solutions when representing the selected indices and other hydrologic signatures based on water balance and Flow Duration Curve characteristics. Finally, regarding the third objective, using near-optimal Pareto parameter distributions as prior knowledge in Bayesian calibration generally reduced both the bias and variability ranges in ERHIs prediction. In addition, there was no significant loss in the reliability of streamflow predictions when targeting ERHIs, while improving precision and reducing the bias. Moreover, parametric uncertainty drastically shrank when linking multi-objective calibration and Bayesian parameter estimation. Still, the representation of low flow magnitude and timing, rate of change, and duration and frequency of extreme flows were limited. These limitations, expressed in terms of bias and interannual variability, were mainly attributed to the hydrological model's structural inadequacies. Therefore, future research should involve revising hydrological models to better describe the ecohydrological characteristics of riverine systems.
Read
- In Collections
-
Electronic Theses & Dissertations
- Copyright Status
- Attribution 4.0 International
- Material Type
-
Theses
- Authors
-
Hernandez Suarez, Juan Sebastian
- Thesis Advisors
-
Nejadhashemi, A. Pouyan
- Committee Members
-
Deb, Kalyanmoy
Harrigan, Timothy
Zayernouri, Mohsen
- Date Published
-
2021
- Program of Study
-
Biosystems Engineering - Doctor of Philosophy
- Degree Level
-
Doctoral
- Language
-
English
- Pages
- xxi, 202 pages
- ISBN
-
9798538123773
- Permalink
- https://doi.org/doi:10.25335/9mpm-p672