Iris recognition : enhancing security and improving performance
Biometric systems recognize individuals based on their physical or behavioral traits, viz., face, iris, and voice. Iris (the colored annular region around the pupil) is one of the most popular biometric traits due to its uniqueness, accuracy, and stability. However, its widespread usage raises security concerns against various adversarial attacks. Another challenge is to match iris images with other compatible biometric modalities (i.e., face) to increase the scope of human identification. Therefore, the focus of this thesis is two-fold: firstly, enhance the security of the iris recognition system by detecting adversarial attacks, and secondly, accentuate its performance in iris-face matching.To enhance the security of the iris biometric system, we work over two types of adversarial attacks - presentation and morph attacks. A presentation attack (PA) occurs when an adversary presents a fake or altered biometric sample (plastic eye, cosmetic contact lens, etc.) to a biometric system to obfuscate their own identity or impersonate another identity. We propose three deep learning-based iris PA detection frameworks corresponding to three different imaging modalities, namely NIR spectrum, visible spectrum, and Optical Coherence Tomography (OCT) imaging inputting a NIR image, visible-spectrum video, and cross-sectional OCT image, respectively. The techniques perform effectively to detect known iris PAs as well as generalize well across unseen attacks, unseen sensors, and multiple datasets. We also presented the explainability and interpretability of the results from the techniques. Our other focuses are robustness analysis and continuous update (retraining) of the trained iris PA detection models. Another burgeoning security threat to biometric systems is morph attacks. A morph attack entails the generation of an image (morphed image) that embodies multiple different identities. Typically, a biometric image is associated with a single identity. In this work, we first demonstrate the vulnerability of iris recognition techniques to morph attacks and then develop techniques to detect the morphed iris images.The second focus of the thesis is to improve the performance of a cross-modal system where iris images are matched against face images. Cross-modality matching involves various challenges, such as cross-spectral, cross-resolution, cross-pose, and cross-temporal. To address these challenges, we extract common features present in both images using a multi-channel convolutional network and also generate synthetic data to augment insufficient training data using a dual-variational autoencoder framework. The two focus areas of this thesis improve the acceptance and widespread usage of the iris biometric system.
Read
- In Collections
-
Electronic Theses & Dissertations
- Copyright Status
- Attribution-NonCommercial 4.0 International
- Material Type
-
Theses
- Authors
-
Sharma, Renu, 1987-
- Thesis Advisors
-
Ross, Arun
- Committee Members
-
Liu, Xiaoming
Boddeti, Vishnu
Aviyente, Selin
- Date Published
-
2022
- Subjects
-
Biometric identification
Human face recognition (Computer science)
Optical pattern recognition
Computer crimes--Prevention
Computer security
- Program of Study
-
Computer Science - Doctor of Philosophy
- Degree Level
-
Doctoral
- Language
-
English
- Pages
- xxvi, 207 pages
- ISBN
-
9798841757634
- Permalink
- https://doi.org/doi:10.25335/ppb3-r742